Oral bioavailability of cantharidin-loaded solid lipid nanoparticles.

Chin Med

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No, 151 Malianwa North Road, Haidian District, Beijing, 100094, P, R, China.

Published: January 2013

Background: The clinical application of cantharidin (CA) is limited by its insolubility, toxicity and short half-life in circulation. This study aims to achieve a steady and sustained blood concentration-time profile, using solid lipid nanoparticles (SLNs) as a drug carrier.

Methods: CA-SLNs were prepared by a film dispersion-ultrasonication method. The physiochemical properties were studied by transmission electron microscopy. In vitro release and in vivo evaluation of CA-SLNs were studied by GC and GC-MS, while a comparison of the pharmacokinetic properties between CA-SLNs and free CA was performed in rats.

Results: The mean size, drug content and encapsulation yield of CA-SLNs were 121 nm, 13.28 ± 0.12% and 93.83 ± 0.45%, respectively. The results show that CA-SLNs had a sustained release profile without a burst effect, a higher bioavailability than free CA after oral administration, and that the relative bioavailability of CA-SLNs to free CA was 250.8%.

Conclusion: CA-SLNs could improve the solubility and oral bioavailability of CA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615953PMC
http://dx.doi.org/10.1186/1749-8546-8-1DOI Listing

Publication Analysis

Top Keywords

oral bioavailability
8
solid lipid
8
lipid nanoparticles
8
ca-slns free
8
ca-slns
7
bioavailability cantharidin-loaded
4
cantharidin-loaded solid
4
nanoparticles background
4
background clinical
4
clinical application
4

Similar Publications

A Comparative Study of the In Vitro Intestinal Permeability of Pinnatoxins and Portimine.

Mar Drugs

January 2025

Toxicology of Contaminants Unit, Fougères Laboratory, ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 35306 Fougères, France.

The pinnatoxins (PnTXs) and portimines, produced by , have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h.

View Article and Find Full Text PDF

Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells.

View Article and Find Full Text PDF

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

Itaconate, an endogenous immunomodulator from the tricarboxylic acid (TCA) cycle, shows therapeutic effects in various disease models, but is highly polar with poor cellular permeability. We previously reported a novel, topical itaconate derivative, SCD-153, for the treatment of alopecia areata. Here, we present the discovery of orally available itaconate derivatives for systemic and skin disorders.

View Article and Find Full Text PDF

Lipid core-chitosan shell hybrid nanoparticles for enhanced oral bioavailability of sorafenib.

Int J Biol Macromol

January 2025

College of Pharmacy, Institute of Pharmaceutical Sciences and Technology, Hanyang University ERICA, Ansan 15588, Republic of Korea. Electronic address:

Limited aqueous solubility is a major hurdle resulting in poor and variable oral bioavailability, high doses, side effects, and the suboptimal therapeutic efficacy of sorafenib (SRF). In this study, we developed SRF-loaded solid lipid nanoparticles (SRF-SLNs) and lipid core-chitosan shell hybrid nanoparticles (CS-SRF-SLNs) to improve the oral absorption of SRF. SRF-SLNs were prepared using a stearyl alcohol core stabilized with a surfactant mixture, followed by surface decoration with chitosan to form CS-SRF-SLNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!