The mouse has emerged as an advantageous species for studying the brain circuitry that underlies complex behavior and for modeling neuropsychiatric disease. The transition from flexible, goal-directed actions to inflexible, habitual responses is argued to be a valid and reliable behavioral model for studying a core aspect of corticostriatal systems that is implicated in certain forms of psychopathology. This transition is thought to correspond to a progression of behavioral control from associative to sensorimotor corticobasal ganglia networks. Habits form following extensive training and are characterized by reduced sensitivity of instrumental responding to reinforcer revaluation; few studies have examined this form of behavioral control in mice. Here we examined the involvement of the dorsolateral and dorsomedial striatum in this transition in the C57BL/6 inbred mouse strain. We provided evidence that damage to the dorsolateral striatum disrupted habitual responding, i.e. it preserved sensitivity to changes in outcome value following either outcome devaluation or, shown for the first time in mice, outcome inflation. Together, these data show that instrumental responding in lesioned mice tracks the current value of a reinforcer and provide evidence that neuroanatomical mechanisms underlying habit learning in rats are preserved in the mouse. This will allow for the genetic and molecular dissection of neural factors involved in decision-making and mechanisms of aberrant habit formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604187PMC
http://dx.doi.org/10.1111/ejn.12106DOI Listing

Publication Analysis

Top Keywords

behavioral control
8
instrumental responding
8
striatum-dependent habits
4
habits insensitive
4
insensitive increases
4
increases decreases
4
decreases reinforcer
4
mice
4
reinforcer mice
4
mice mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!