CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584858PMC
http://dx.doi.org/10.1128/IAI.01388-12DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
8
innate host
8
hcd98 mice
8
vivo studies
8
direct binding
8
epec/c rodentium
8
extracellular loop
8
cd98
7
cells
5
vivo
5

Similar Publications

Comprehensive analysis of heterogeneity and cell-cell interactions in Crohn's disease reveals novel location-specific insights.

J Adv Res

December 2024

Department of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Inflammatory Bowel Disease Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Introduction: In Crohn's disease (CD), lesions are mainly distributed in a segmental manner, with the primary sites of involvement being the ileum and colon. Heterogeneity in colon and ileum results in location-specific clinical presentations and therapeutic responses. Mucosal healing tends to be more readily and quickly achieved in the colon than in the ileum, where lesions are more likely to develop into complex behaviors.

View Article and Find Full Text PDF

Vitamin B, or riboflavin, is essential for maintaining healthy cellular metabolism and function. However, its light sensitivity, poor water solubility, and gastrointestinal barriers limit its storage, delivery, and absorption. Selecting suitable nanomaterials for encapsulating vitamin B is crucial to overcoming these challenges.

View Article and Find Full Text PDF

Development of a molecular assay for the determination of Eimeria tenella oocyst viability.

Parasitol Res

December 2024

Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.

Coccidiosis is caused by apicomplexan parasites of the genus Eimeria, which infect epithelial cells of the intestinal tract causing diarrhea and negatively impacting production in the poultry industry. The self-limiting and highly immunogenic nature of infection by Eimeria spp. make live vaccination an effective means of coccidiosis control.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells.

View Article and Find Full Text PDF

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!