Pancreatitis is associated with release of proinflammatory cytokines and reactive oxygen species and plays an important role in the development of pancreatic cancer. We recently demonstrated that dual oxidase (Duox)2, an NADPH oxidase essential for reactive oxygen species-related, gastrointestinal host defense, is regulated by IFN-γ-mediated Stat1 binding to the Duox2 promoter in pancreatic tumor lines. Because LPS enhances the development and invasiveness of pancreatic cancer in vivo following TLR4-related activation of NF-κB, we examined whether LPS, alone or combined with IFN-γ, regulated Duox2. We found that upregulation of TLR4 by IFN-γ in BxPC-3 and CFPAC-1 pancreatic cancer cells was augmented by LPS, resulting in activation of NF-κB, accumulation of NF-κB (p65) in the nucleus, and increased binding of p65 to the Duox2 promoter. TLR4 silencing with small interfering RNAs, as well as two independent NF-κB inhibitors, attenuated LPS- and IFN-γ-mediated Duox2 upregulation in BxPC-3 cells. Induction of Duox2 expression by IFN-γ and LPS may result from IFN-γ-related activation of Stat1 acting in concert with NF-κB-related upregulation of Duox2. Sustained extracellular accumulation of H(2)O(2) generated by exposure to both LPS and IFN-γ was responsible for an ∼50% decrease in BxPC-3 cell proliferation associated with a G(1) cell cycle block, apoptosis, and DNA damage. We also demonstrated upregulation of Duox expression in vivo in pancreatic cancer xenografts and in patients with chronic pancreatitis. These results suggest that inflammatory cytokines can interact to produce a Duox-dependent pro-oxidant milieu that could increase the pathologic potential of pancreatic inflammation and pancreatic cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563939PMC
http://dx.doi.org/10.4049/jimmunol.1201725DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
dual oxidase
12
pancreatic
8
reactive oxygen
8
duox2 promoter
8
activation nf-κb
8
duox2 upregulation
8
cancer cells
8
duox2
7
cancer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!