A chemo-enzymatic route to synthesize (S)-γ-valerolactone from levulinic acid.

Appl Microbiol Biotechnol

Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestraße 15, 21073 Hamburg, Germany.

Published: May 2013

Levulinic acid is a feasible platform chemical derived from acid-catalyzed hydrolysis of lignocellulose. The conversion of this substrate to (S)-γ-valerolactone ((S)-GVL) was investigated in a chemo-enzymatic reaction sequence that benefits from mild reaction conditions and excellent enantiomeric excess of the desired (S)-GVL. For that purpose, levulinic acid was chemically esterified over the ion exchange resin Amberlyst 15 to yield ethyl levulinate (LaOEt). The keto ester was successfully reduced by (S)-specific carbonyl reductase from Candida parapsilosis (CPCR2) in a substrate-coupled cofactor regeneration system utilizing isopropanol as cosubstrate. In classical batch experiments, a maximum conversion of 95 % was achieved using a 20-fold excess of isopropanol. Continuous reduction of LaOEt was carried out for 24 h, and a productivity of more than 5 mg (S)-ethyl-4-hydroxypentanoate (4HPOEt) per μg CPCR2 was achieved. Afterwards (S)-4HPOEt (>99%ee) was substituted to lipase-catalyzed lactonization using immobilized lipase B from Candida antarctica to yield (S)-GVL in 90 % overall yield and >99%ee.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-012-4652-5DOI Listing

Publication Analysis

Top Keywords

levulinic acid
12
chemo-enzymatic route
4
route synthesize
4
synthesize s-γ-valerolactone
4
s-γ-valerolactone levulinic
4
acid levulinic
4
acid feasible
4
feasible platform
4
platform chemical
4
chemical derived
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!