Trends in lanthanide(III) (Ln(III)) coordination were investigated within nanoconfined solvation environments. Ln(III) ions were incorporated into the cores of reverse micelles (RMs) formed with malonamide amphiphiles in n-heptane by contact with aqueous phases containing nitrate and Ln(III); both insert into pre-organized RM units built up of DMDOHEMA (N,N'-dimethyl-N,N'-dioctylhexylethoxymalonamide) that are either relatively large and hydrated or small and dry, depending on whether the organic phase is acidic or neutral, respectively. Structural aspects of the Ln(III) complex formation and the RM morphology were obtained by use of XAS (X-ray absorption spectroscopy) and SAXS (small-angle X-ray scattering). The Ln(III) coordination environments were determined through use of L(3)-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure), which provide metrical insights into the chemistry across the period. Hydration numbers for the Eu species were measured using TRLIFS (time-resolved laser-induced fluorescence spectroscopy). The picture that emerges from a system-wide perspective of the Ln-O interatomic distances and number of coordinating oxygen atoms for the extracted complexes of Ln(III) in the first half of the series (i.e., Nd, Eu) is that they are different from those in the second half of the series (i.e., Tb, Yb): the number of coordinating oxygen atoms decrease from 9O for early lanthanides to 8O for the late ones--a trend that is consistent with the effect of the lanthanide contraction. The environment within the RM, altered by either the presence or absence of acid, also had a pronounced influence on the nitrate coordination mode; for example, the larger, more hydrated, acidic RM core favors monodentate coordination, whereas the small, dry, neutral core favors bidentate coordination to Ln(III). These findings show that the coordination chemistry of lanthanides within nanoconfined environments is neither equivalent to the solid nor bulk solution behaviors. Herein we address atomic- and mesoscale phenomena in the under-explored field of lanthanide coordination and periodic behavior within RMs, providing a consilience of fundamental insights into the chemistry of growing importance in technologies as diverse as nanosynthesis and separations science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201202880 | DOI Listing |
Phys Chem Chem Phys
January 2025
CNR-Istituto Officina dei Materiali, TASC, Trieste, Italy.
The CO oxidation reaction on (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O and (Cr,Mn,Fe,Co,Ni)O high entropy spinel oxides was studied for what concerns its mechanism by means of soft X-ray absorption spectroscopy. In the (Cr,Mn,Fe,Co,Ni)O high entropy spinel, CO oxidation starts at 150 °C, and complete conversion to CO is obtained at 300 °C. For the (Co,Mg,Mn,Ni,Zn)(Al,Co,Cr,Fe,Mn)O spinel oxides, in contrast, the reaction starts at 200 °C, and complete conversion needs temperatures of the order of 350 °C.
View Article and Find Full Text PDFBiophys Rev (Melville)
March 2025
School of Physics, Australian Centre for Microscopy and Microanalysis, Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
The accurate detection of x-rays enables broad applications in various fields, including medical radiography, safety and security screening, and nondestructive inspection. Medical imaging procedures require the x-ray detection devices operating with low doses and high efficiency to reduce radiation health risks, as well as expect the flexible or wearable ones that offer more comfortable and accurate diagnosis experiences. Recently, halide perovskites have shown promising potential in high-performance, cost-effective x-ray detection owing to their attractive features, such as strong x-ray absorption, high-mobility-lifetime product, tunable bandgap, fast response, as well as low-cost raw materials, facile processing, and excellent flexibility.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Metal Research (IMR), Chinese Academy of Science, Wenhua Road, Shenyang, China.
Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.
View Article and Find Full Text PDFNanoscale
January 2025
Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.
All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Karlsruhe Institute of Technology KIT, Institute for Chemical Technology and Polymer Chemistry, Kaiserstr. 12, Fakultät für Chemie, 76131, Karlsruhe, GERMANY.
In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!