Variability in muscle adaptation to electrical stimulation.

Int J Sports Med

Department of Internal Medicine, Division of Endocrinology, Diabetology and -Metabolism, Molinette Hospital, University of Turin, Turin, Italy.

Published: June 2013

The aims were to investigate the plasticity of the myosin heavy chain (MHC) phenotype following neuromuscular electrical stimulation (NMES) and to assess the correlation between MHC isoform distribution and muscle fibre conduction velocity (MFCV).14 men were subjected to 24 sessions of quadriceps NMES. Needle biopsies were taken from the dominant vastus lateralis and neuromuscular tests were performed on the dominant thigh before and after training. NMES significantly increased the quadriceps maximal force by 14.4±19.7% (P=0.02), vastus lateralis thickness by 10.7±8.6% (P=0.01), vastus lateralis MFCV by 11.1±3.5% (P<0.001), vastus medialis MFCV by 8.4±1.8% (P<0.001). The whole spectrum of possible MHC isoform adaptations to training was observed: fast-to-slow transition (4 subjects), bi-directional transformation from MHC-1 and MHC-2X isoforms toward MHC-2A isoform (7 subjects), shift toward MHC-2X (2 subjects), no MHC distribution change (1 subject). No significant correlation was observed between MHC-2 relative content and vastus lateralis MFCV (pre-training: R2=0.04, P=0.46; post-training: R2=0.02, P=0.67). NMES elicited distinct adaptations in the MHC composition and increased force, muscle thickness, and MFCV. The MHC isoform distribution did not correlate with MFCV, thus implying that the proportion of different fibre types cannot be estimated from this electrophysiological variable.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0032-1321799DOI Listing

Publication Analysis

Top Keywords

vastus lateralis
12
electrical stimulation
8
variability muscle
4
muscle adaptation
4
adaptation electrical
4
stimulation aims
4
aims investigate
4
investigate plasticity
4
plasticity myosin
4
myosin heavy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!