Differential alkaloid profile in Uncaria tomentosa micropropagated plantlets and root cultures.

Biotechnol Lett

Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. I. P. N. 2508. Col. San Pedro Zacatenco, 07360 Mexico, DF, Mexico.

Published: May 2013

The alkaloids of Uncaria tomentosa micropropagated plantlets and root cultures were isolated and identified by NMR and mass spectrometry. Plantlets yielded pteropodine (1), isopteropodine (2), mitraphylline (3), isomitraphylline (4), uncarine F (5), speciophylline (6), rhynchophylline (7) and isorhynchophylline (8). In plantlets growing under continuous light, tetracyclic alkaloids 7 and 8 decreased from 20 ± 1.8 at 2 months to 2.2 ± 0.33 mg/g dry wt at 6 months, while the pentacyclic alkaloids 1-4 increased from 7.7 ± 1.4 to 15 ± 0.05 mg/g dry wt, supporting their biogenetic conversion. Micropropagated plantlets produced four times more alkaloids (27.6 ± 3.1 mg/g dry wt) than greenhouse plants. Plantlet roots yielded 3, 4, 8 and the glucoindole alkaloids 3α-dihydrocadambine (9) and dolichantoside (10), the last one not previously found in Uncaria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-012-1128-8DOI Listing

Publication Analysis

Top Keywords

micropropagated plantlets
12
mg/g dry
12
uncaria tomentosa
8
tomentosa micropropagated
8
plantlets root
8
root cultures
8
plantlets
5
alkaloids
5
differential alkaloid
4
alkaloid profile
4

Similar Publications

The abiotic stresses to which plants are exposed, especially in times of climate change, can result in the disruption of natural plant physiological processes. Sudden atmospheric phenomena may increase the risk of failure in protecting rare and extinction-threatened plant species by translocation. This study aimed to determine the effect of extreme ambient temperatures on the condition and physiological response of plantlets used for their reintroduction into the natural habitat.

View Article and Find Full Text PDF

A mono-phasic protocol for micropropagation of potato cv. Cooch Behar local, its acclimatization, on-field evaluation, and fidelity analysis.

3 Biotech

February 2025

Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.

A protocol for micropropagation of potato ( L.) cv. Cooch Behar local retaining the fidelity of the in vitro regenerants was established for the first time.

View Article and Find Full Text PDF

Somatic Embryogenesis from the Leaf-Derived Calli of In Vitro Shoot-Regenerated Plantlets of 'Carola'.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Roses are one of the most important flowers applied to landscape, cut flowers, fragrance and food industries widely. As an effective method for plant reproduction, the regeneration via somatic embryos is the most promising method for breed improvement and genetic transformation of woody plants. However, lower somatic embryogenesis (SE) induction rates and genotypic constraints impede progress in genetic transformation in rose.

View Article and Find Full Text PDF

RITA Temporary Immersion System (TIS) for Biomass Growth Improvement and Ex Situ Conservation of Erben & Raimondo.

Plants (Basel)

December 2024

Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Campus Ecotekne, 73100 Lecce, Italy.

Erben & Raimondo is a rare and endangered taxon, endemic to a limited area on Mount Pizzuta in northwestern Sicily, Italy. Its population is significantly threatened by anthropogenic activities, including fires, overgrazing, and habitat alterations. Temporary immersion systems (TISs) have proven effective for large-scale propagation in various protected species, offering potential for ex situ conservation and population reinforcement of .

View Article and Find Full Text PDF
Article Synopsis
  • Micro-propagation is essential for mass-producing greenhouse orchids, but factors like culture media and cultivation systems affect efficiency and cost.
  • This study tested eight media on Phalaenopsis orchid mini-plantlets and focused on four effective media across different cultivation systems (semi-solid and various liquid formats).
  • Results showed that the SM2 medium significantly boosted growth due to its additives, high carbon content, and optimal cultivation in TIS-RITA, achieving better plant performance and reducing production costs by 61.6%.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!