Background: Mutations in PTEN-induced kinase 1 (PINK1) cause early-onset recessive parkinsonism. PINK1 and Parkin regulate mitochondrial quality control. However, PINK1 ablation in Drosophila and cultured mammalian cell lines affected mitochondrial function/dynamics in opposite ways, confounding the elucidation of the role of PINK1 in these processes.
Objective: We recently generated PINK1-deficient (PINK1-/-) mice and reasoned that primary cells from these mice provide a more physiological substrate to study the role of PINK1 in mammals and to investigate metabolic adaptations and neuron-specific vulnerability in PINK1 deficiency.
Methods And Results: Using real-time measurement of oxygen consumption and extracellular acidification, we show that basal mitochondrial respiration is increased, while maximum respiration and spare respiratory capacity are decreased in PINK1-/- mouse embryonic fibroblasts (MEF), as is the membrane potential. In addition, a Warburg-like effect in PINK1-/- MEF promotes survival that is abrogated by inhibition of glycolysis. Expression of uncoupling protein-2 is decreased in PINK1-/- MEF and the striatum of PINK1-/- mice, possibly increasing the sensitivity to oxidative stress. Mitochondria accumulate in large foci in PINK1-/- MEF, indicative of abnormal mitochondrial dynamics and/or transport. Like in PINK1-/- Drosophila, enlarged/swollen mitochondria accumulate in three different cell types from PINK1-/- mice (MEF, primary cortical neurons and embryonic stem cells). However, mitochondrial enlargement is greatest and most prominent in primary cortical neurons that also develop cristae fragmentation and disintegration.
Conclusion: Our results reveal mechanisms of PINK1-related parkinsonism, show that the function of PINK1 is conserved between Drosophila and mammals when studied in primary cells, and demonstrate that the same PINK1 mutation can affect mitochondrial morphology/degeneration in a cell type-specific manner, suggesting that tissue-/cell-specific metabolic capacity and adaptations determine phenotypes and cellular vulnerability in PINK1-/- mice and cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000345689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!