The use of alternative poly(A) sites is common and affects the post-transcriptional fate of mRNA, including its stability, subcellular localization and translation. Here, we present a method to identify poly(A) sites in a genome-wide and strand-specific manner. This method, termed 3'T-fill, initially fills in the poly(A) stretch with unlabeled dTTPs, allowing sequencing to start directly after the poly(A) tail into the 3'-untranslated regions (UTR). Our comparative analysis demonstrates that it outperforms existing protocols in quality and throughput and accurately quantifies RNA levels as only one read is produced from each transcript. We use this method to characterize the diversity of polyadenylation in Saccharomyces cerevisiae, showing that alternative RNA molecules are present even in a genetically identical cell population. Finally, we observe that overlap of convergent 3'-UTRs is frequent but sharply limited by coding regions, suggesting factors that restrict compression of the yeast genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597643 | PMC |
http://dx.doi.org/10.1093/nar/gks1249 | DOI Listing |
BMC Biol
December 2024
Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic.
Background: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Department of Biochemistry, University of Toronto, Toronto, Canada
In humans, misprocessed mRNAs containing intact 5' Splice Site (5'SS) motifs are nuclear retained and targeted for decay by ZFC3H1, a component of the Poly(A) Exosome Targeting complex, and U1-70K, a component of the U1 snRNP. In , the ZFC3H1 homolog, Red1, binds to the YTH domain-containing protein Mmi1 and targets certain RNA transcripts to nuclear foci for nuclear retention and decay. Here we show that YTHDC1 and YTHDC2, two YTH domain-containing proteins that bind to -6-methyladenosine (m6A) modified RNAs, interact with ZFC3H1 and U1-70K, and are required for the nuclear retention of mRNAs with intact 5'SS motifs.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Background: Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including stage development in plants. N-methyladenosine (mA) modification and polyadenylation are noteworthy regulatory processes that impact transcript functions by modulating their abundance. However, the specific landscapes of mA modification and polyadenylation on lncRNAs remain largely unexplored.
View Article and Find Full Text PDFGenome Res
November 2024
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression.
View Article and Find Full Text PDFHeliyon
October 2024
School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, 341000, China.
Post-transcriptional processing and modification of viral RNA, including alternative splicing, polyadenylation, and methylation, play crucial roles in regulating viral gene expression, enhancing genomic stability, and increasing replication efficiency. These processes have significant implications for viral biology and antiviral therapies. In this study, using Oxford Nanopore Technology (ONT) direct RNA sequencing (DRS), we provided a comprehensive analysis of the transcriptome and epitranscriptome features of the HIV-1 B (NL4-3) subtype strain and, for the first time, characterized these features in the CRF01_AE (GX2005002) subtype strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!