A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases. | LitMetric

Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases.

Chem Biol Interact

Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.

Published: February 2013

The α-hydroxy ketones are used as building blocks for compounds of pharmaceutical interest (such as antidepressants, HIV-protease inhibitors and antitumorals). They can be obtained by the action of enzymes or whole cells on selected substrates, such as diketones. We have studied the enantiospecificities of several fungal (AKR3C1, AKR5F and AKR5G) and human (AKR1B1 and AKR1B10) aldo-keto reductases in the production of α-hydroxy ketones and diols from vicinal diketones. The reactions have been carried out with pure enzymes and with an NADPH-regenerating system consisting of glucose-6-phosphate and glucose-6-phosphate dehydrogenase. To ascertain the regio and stereoselectivity of the reduction reactions catalyzed by the AKRs, we have separated and characterized the reaction products by means of a gas chromatograph equipped with a chiral column and coupled to a mass spectrometer as a detector. According to the regioselectivity and stereoselectivity, the AKRs studied can be divided in two groups: one of them showed preference for the reduction of the proximal keto group, resulting in the S-enantiomer of the corresponding α-hydroxy ketones. The other group favored the reduction of the distal keto group and yielded the corresponding R-enantiomer. Three of the AKRs used (AKR1B1, AKR1B10 and AKR3C1) could produce 2,3-butanediol from acetoin. We have explored the structure/function relationships in the reactivity between several yeast and human AKRs and various diketones and acetoin. In addition, we have demonstrated the utility of these AKRs in the synthesis of selected α-hydroxy ketones and diols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2012.12.006DOI Listing

Publication Analysis

Top Keywords

α-hydroxy ketones
16
yeast human
8
aldo-keto reductases
8
akr1b1 akr1b10
8
ketones diols
8
keto group
8
ketones
5
akrs
5
biocatalytic production
4
production alpha-hydroxy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!