Introduction: Severe brain hypoxia in the territory of the occluded artery is a key feature of ischemic stroke. This region can be imaged using positron emission tomography (PET) and the standard hypoxia radiotracer (18)F-fluoromisonidazole ((18)F-FMISO). However, the utility of (18)F-FMISO is limited by its slow accumulation in the lesion. Therefore, this study investigated three hypoxia-sensitive radiotracers, namely the nitroimidazole (18)F-fluoroazomycin arabinoside ((18)F-FAZA) and two (64)Cu bis(thiosemicarbazone) complexes ((64)Cu-ATSM and (64)Cu-ATSE), expected to have improved pharmacokinetic profiles relative to (18)F-FMISO, in a rodent model of ischemic stroke.

Methods: In anaesthetised Wistar rats, the distal middle cerebral artery was permanently occluded by electrocoagulation, the radiotracers administered intravenously and animals PET scanned for up to 3hours, followed by T2-weighted magnetic resonance imaging to map the infarct.

Results: As expected, late and prominent (18)F-FMISO retention was observed despite lower tracer delivery into the affected region. Time-activity curves revealed that both (64)Cu-ATSM and (64)Cu-ATSE showed rapid entry and efflux from the brain, but did not show significant accumulation in the lesion. (18)F-FAZA showed limited brain penetration, and accumulation in the lesion was inconsistent, low and as slow as (18)F-FMISO.

Conclusions: This study suggests further development of these radiotracers as hypoxia markers for ischemic stroke may not be warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nucmedbio.2012.11.012DOI Listing

Publication Analysis

Top Keywords

accumulation lesion
12
brain hypoxia
8
rodent model
8
ischemic stroke
8
64cu-atsm 64cu-atse
8
comparison pet
4
pet tracers
4
brain
4
tracers brain
4
hypoxia
4

Similar Publications

Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.

View Article and Find Full Text PDF

Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.

View Article and Find Full Text PDF

Background: Gaucheromas, pseudotumors composed of Gaucher cells, are rare complications of Gaucher's Disease (GD). They are usually seen in patients receiving enzyme replacement. Surgery is generally not recommended for these benign masses in treatment management.

View Article and Find Full Text PDF

Drug delivery systems loaded with plant-derived natural products for dental caries prevention and treatment.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Dental caries, driven by dysbiosis in oral flora and acid accumulation, pose a significant threat to oral health. Traditional methods of managing dental biofilms using broad-spectrum antimicrobials and fluoride face limitations such as microbial resistance. Natural products, with their antimicrobial properties, present a promising solution for managing dental caries, yet their clinical application faces significant challenges, including low bioavailability, variable efficacy, and patient resistance due to sensory properties.

View Article and Find Full Text PDF

Background: Olfactory deficits are predictive of cognitive decline and dementia. Previous studies have linked brain magnetic resonance imaging markers of neurodegeneration to olfactory deficits in aging; however, these studies analyzed cross-sectional data for markers, olfaction, or both. Furthermore, potential cerebrovascular contributions to understanding why olfactory deficits predict dementia remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!