A novel series of N-(azetidin-3-yl)-2-(heteroarylamino)acetamide CCR2 antagonists.

Bioorg Med Chem Lett

Janssen Pharmaceutical Research & Development, L.L.C., Welsh & McKean Roads, Spring House, PA 19477, USA.

Published: February 2013

The inflammatory response associated with the activation of C-C chemokine receptor CCR2 via it's interaction with the monocyte chemoattractant protein-1 (MCP-1, CCL2) has been implicated in many disease states, including rheumatoid arthritis, multiple sclerosis, atherosclerosis, asthma and neuropathic pain. Small molecule antagonists of CCR2 have been efficacious in animal models of inflammatory disease, and have been advanced into clinical development. The necessity to attenuate hERG binding appears to be a common theme for many of the CCR2 antagonist scaffolds appearing in the literature, presumably due the basic hydrophobic motif present in all of these molecules. Following the discovery of a novel cyclohexyl azetidinylamide CCR2 antagonist scaffold, replacement of the amide bond with heterocyclic rings was explored as a strategy for reducing hERG binding and improving pharmacokinetic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.12.017DOI Listing

Publication Analysis

Top Keywords

herg binding
8
ccr2 antagonist
8
ccr2
5
novel series
4
series n-azetidin-3-yl-2-heteroarylaminoacetamide
4
n-azetidin-3-yl-2-heteroarylaminoacetamide ccr2
4
ccr2 antagonists
4
antagonists inflammatory
4
inflammatory response
4
response associated
4

Similar Publications

Background And Objective: In silico human models are being used more and more to predict the potential proarrhythmic risk of compounds. It has been shown that incorporation of the dynamics of drug-hERG channel interactions can have an important impact on the action potential duration (APD) at normal heart rates. Our aim is to investigate the relevance of drug dynamics on other important biomarkers of proarrhythmic risk.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) patients are treated with a standardised, short World Health Organization (WHO) regimen which includes clofazimine (CFZ) and bedaquiline (BDQ) antibiotics. These two antibiotics lead to the development of QT prolongation in patients, inhibiting potassium (K) uptake by targeting the voltage-gated K (Kv)11.1 (hERG) channel of the cardiomyocytes (CMs).

View Article and Find Full Text PDF

In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder.

PLoS One

December 2024

Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America.

R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes.

View Article and Find Full Text PDF

In traditional medicine, potential anti-inflammatory and pain-relieving activity of and has been emphasized. In this study, we explored binding affinity of 36 bioactive compounds from these plants to cyclooxygenase-2 (COX-2) receptor using docking method. Six compounds namely, beta carotene, lycopene, lutein, momordicoside, rutin and azadirachtin showed excellent binding affinities (-10.

View Article and Find Full Text PDF

Stereoselective block of the hERG potassium channel by the Class Ia antiarrhythmic drug disopyramide.

Cell Mol Life Sci

November 2024

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.

Article Synopsis
  • Potassium channels from the human hERG gene are affected by various drugs, and this study specifically investigates the effects of chiral disopyramide, a Class Ia antiarrhythmic, on hERG currents in HEK 293 cells.* -
  • The findings show that the S(+) enantiomer of disopyramide is more potent at inhibiting hERG current compared to the R(-) form, with IC values of 3.9 µM and 12.9 µM respectively, and certain mutations in hERG alter these effects.* -
  • Molecular simulations indicate that the S(+) form binds more effectively to specific residues in the hERG channel, while the R(-)
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!