Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2012.12.001 | DOI Listing |
Sensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.
Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
RGB-T salient object detection (SOD) has received considerable attention in the field of computer vision. Although existing methods have achieved notable detection performance in certain scenarios, challenges remain. Many methods fail to fully utilize high-frequency and low-frequency features during information interaction among different scale features, limiting detection performance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Precision Neutrino Research, Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea.
Reactor-emitted electron antineutrinos can be detected via the inverse beta decay reaction, which produces a characteristic signal: a two-fold coincidence between a prompt positron event and a delayed neutron capture event within a specific time frame. While liquid scintillators are widely used for detecting neutrinos reacting with matter, detection is difficult because of the low interaction of neutrinos. In particular, it is important to distinguish between neutron (n) and gamma (γ) signals.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
Structural damage identification based on structural health monitoring (SHM) data and machine learning (ML) is currently a rapidly developing research area in structural engineering. Traditional machine learning techniques rely heavily on feature extraction, where weak feature extraction can lead to suboptimal features and poor classification performance. In contrast, ML-based methods, particularly deep learning approaches like convolutional neural networks (CNNs), automatically extract relevant features from raw data, improving the accuracy and adaptability of the damage identification process.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.
Extracting behavioral information from animal sounds has long been a focus of research in bioacoustics, as sound-derived data are crucial for understanding animal behavior and environmental interactions. Traditional methods, which involve manual review of extensive recordings, pose significant challenges. This study proposes an automated system for detecting and classifying animal vocalizations, enhancing efficiency in behavior analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!