Ablative fractional resurfacing in topical drug delivery: an update and outlook.

Dermatol Surg

Ronald O. Perelman Department of Dermatology, School of Medicine, New York University, New York, New York 10016, USA.

Published: June 2013

Background: The effective delivery of therapeutic molecules to varied targets in the skin and elsewhere has been an area of ongoing research and development.

Objective: To review the structure of the skin with an emphasis on topical drug delivery and to present the rationale for the use of ablative and nonablative fractional resurfacing in assisted drug delivery.

Methods And Materials: Review of the currently available scientific literature on laser-assisted drug delivery.

Results: A number of strategies can be employed to enhance topical drug delivery. Ablative fractional resurfacing (AFR) has been demonstrated to be effective in enhancing drug delivery. Further studies are needed to assess the use of nonablative fractional resurfacing in assisted drug delivery.

Conclusion: AFR-assisted drug delivery is a promising tool for the future of dermatology. We expect to see a number of agents to be paired with AFR for enhanced drug delivery. Further investigation is necessary to evaluate appropriate drug specific channel density and depth parameters. Factors that must be considered include the physicochemical properties of the drug, the target tissue, skin wounding, and cost when evaluating the drugs and conditions that will most benefit from this promising new drug delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dsu.12111DOI Listing

Publication Analysis

Top Keywords

drug delivery
28
fractional resurfacing
16
drug
12
topical drug
12
ablative fractional
8
delivery
8
nonablative fractional
8
resurfacing assisted
8
assisted drug
8
resurfacing
4

Similar Publications

Tailoring Design of Microneedles for Drug Delivery and Biosensing.

Mol Pharm

January 2025

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.

Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications.

View Article and Find Full Text PDF

Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.

View Article and Find Full Text PDF

PROTACs usually occupy physicochemical space outside the one defined by classical drug-like molecules, which often presents considerable challenges in their optimization and development for oral administration. We have previously reported phenyl glutarimide (PG)-based BET PROTAC SJ995973, with improved overall degradation and antiproliferative activities compared to its direct thalidomide-based analogue dBET1, but similarly poor pharmacokinetic profile. To further demonstrate the PG utility, we describe here optimization efforts that led to the discovery of an orally bioavailable BET-PROTAC SJ44236 (), and results of a comprehensive comparative study with analogues containing alternative CRBN-directing warheads.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Impulse control disorders in Parkinson's disease: What's new?

J Neurol

January 2025

Parkinson's Disease Research Clinic, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.

Impulse Control Disorders (ICDs) are increasingly recognized as a significant non-motor complication in Parkinson's disease (PD), impacting patients and their caregivers. ICDs in PD are primarily associated with dopaminergic treatments, particularly dopamine agonists, though not all patients develop these disorders, indicating a role for genetic and other clinical factors. Studies over the past few years suggest that the mesocorticolimbic reward system, a core neural substrate for impulsivity, is a key contributor to ICDs in PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!