Objective: Various studies have implicated automobile exhausts as risk factors in cardiovascular and pulmonary diseases; however, there is little or no documentation on the role of the main source of the exhausts, petroleum hydrocarbons, on cardiopulmonary pathologies. Thus, we investigated the effect of petroleum hydrocarbons, using various petroleum products, on histomorphology of the lung and the role of lipid peroxidation in it.
Materials And Methods: Control rats were not exposed to any of the petroleum products, whereas petrol-exposed, diesel-exposed, and kerosene-exposed rats were exposed to petrol, diesel, and kerosene by inhalation, respectively.
Results: Exposure to petroleum hydrocarbons significantly induced lipid peroxidation with a consequent rise in malondialdehyde (MDA), and a decrease in superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) level. Exposure to petroleum hydrocarbons also caused an alteration in the histomorphology of lung tissues.
Conclusion: Our findings imply that exposure to petroleum hydrocarbons by inhalation is a risk factor in the pathophysiology of pulmonary dysfunction. This is associated with oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532778 | PMC |
http://dx.doi.org/10.4103/0971-6580.103678 | DOI Listing |
PLoS One
January 2025
Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.
Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
Objective: The aromatic profile of Rosa canina L. petals hold immense potential for the fragrance and pharmaceutical industries. This study aims to investigate the chemical composition and gene expression patterns across different floral development stages to uncover the biosynthetic pathways of floral scent.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of Congo.
Lantana montevidensis (Spreng.) Briq. is a shrub native to South American countries.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!