Background: Antibiotic-resistant Acinetobacter nosocomial infection is a leading problem. It acts as an opportunistic pathogen to cause a wide spectrum of infection including nosocomial pneumonia, meningitis, endocarditis, skin and soft tissue infections, urinary tract infection, conjunctivitis, burn wound infection and bacteremia. Multidrug-resistant Acinetobacter infection creates a great problem in hospital setting.
Materials And Methods: The clinical specimens obtained from ICU and different surgical and medical wards were investigated using standard microbiological techniques to know the distribution of and their resistant profile. Antimicrobial resistance was studied using the modified Kirby Bauer disk diffusion technique following the CLSI protocol.
Results: Major infections found in different medical wards, surgical wards and ICU were due to Acinetobacter baumannii (74.02%), A. lowfii (14.2%), A. haemolyticus (7.79%), A. junii (3.8%) among Acinetobacter spices. Acinetobacter showed increased resistant against majority of commercially available drugs imipenem (5.2%), meropenem (9.75%), piperacillin-tazobactum (18.2%), netilmicin (16.24%), amikacin (14.29%), ceftazidime (74.1%), gentamicin (70.13%), ofloxacin (42.21%).
Conclusion: A. baumannii was found to be associated with UTI, RTI, septicemia, bacteremia, and meningitis and wound infection. A. baumannii displayed higher resistance to more number of antibiotics than other nosocomial pathogens from ICU.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531029 | PMC |
http://dx.doi.org/10.4103/0300-1652.104379 | DOI Listing |
Microbiol Spectr
December 2024
College of Ecology, Lishui University, Lishui, Zhejiang, China.
Unlabelled: and are recognized as significant opportunistic pathogens affecting aquatic animals and humans. However, their infections in amphibians are poorly documented, and their pathogenicity to the Chinese spiny frog () remains unexplored. This study investigated an outbreak of putrid-skin disease among on a farm in Lishui City, Zhejiang Province, China.
View Article and Find Full Text PDFJ Postgrad Med
January 2025
Department of Infectious Diseases, Damascus University- Faculty of Medicine, Damascus, Syria.
Introduction: This study aimed to determine the bacterial profile and their antibiotic spectrum in patients with ventilator-associated pneumonia (VAP) and investigate the risk factors for VAP and the presence of multidrug-resistant (MDR) pathogens.
Materials And Methods: A cross-sectional study was included 105 patients with clinically suspected VAP in intensive care units (ICUs) of two university hospitals from Syria, between January 2023 and February 2024. Culture-positive included 69 samples (65.
Front Microbiol
December 2024
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFSci Rep
December 2024
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia.
One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!