Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.

Chemistry

College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, PR China.

Published: February 2013

Experiments have shown that the μ-η(2):η(2)-peroxodicopper(II) complex [Cu(2)O(2)(N,N'-di-tert-butylethylenediamine)(2)](2+) rapidly oxidizes 2,4-di-tert-butylphenolate into a mixture of catechol and quinone and that, at the extreme temperature of -120 °C, a bis-μ-oxodicopper(III)-phenolate intermediate, labeled complex A, can be observed. These experimental results suggest a new mechanism of action for the dinuclear copper-containing enzyme tyrosinase, involving an early O-O bond-cleavage step. However, whether phenolate binding occurs before or after the cleavage of the O-O bond has not been possible to answer. In this study, hybrid density functional theory is used to study the synthetic reaction and, based on the calculated free-energy profile, a mechanism is suggested for the entire phenolate-oxidation reaction that agrees with the experimental observations. Most importantly, the calculations show that the very first step in the reaction is the cleavage of the O-O bond in the peroxo complex and that, subsequently, the phenolate substrate coordinates to one of the copper ions in the bis-μ-oxodicopper(III) complex to yield the experimentally characterized phenolate intermediate (A). The oxidation of the phenolate substrate into a quinone then occurs in three steps: 1) C-O bond formation, 2) coupled internal proton and electron transfer, and 3) electron transfer coupled to proton transfer from an external donor (acidic workup, experimentally). The first of these steps is rate limiting for the decay of complex A, with a calculated free-energy barrier of 10.7 kcal  mol(-1) and a deuterium kinetic isotope effect of 0.90, which are in good agreement with the experimental values of 11.2 kcal  mol(-1) and 0.83(±0.09). The tert-butyl substituents on both the phenol substrate and the copper ligands need to be included in the calculations to give a correct description of the reaction mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201203052DOI Listing

Publication Analysis

Top Keywords

cleavage o-o
8
o-o bond
8
calculated free-energy
8
phenolate substrate
8
complex
6
theoretical study
4
study oxidation
4
oxidation phenolates
4
phenolates [cu2o2nn'-di-tert-butylethylenediamine2]2+
4
[cu2o2nn'-di-tert-butylethylenediamine2]2+ complex
4

Similar Publications

The selective reaction of cyclic aminoperoxides with FeCl proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans.

View Article and Find Full Text PDF

The one-step oxidation of benzene to phenol represents a significant and promising advancement in modern industries focused on the production of high-value-added chemical products. Nevertheless, challenges persist in achieving sufficient catalytic selectivity and preventing over-oxidation. Inspired by copper enzymes, we present a nonsymmetric dicopper complex ([CuII2(TPMAN)(μ-OH)(HO)], 1) for the selective oxidation of benzene to phenol.

View Article and Find Full Text PDF

Identifying N Coordination Types of Single-Atom Catalysts by Spin-Modulated Luminol Cathodic Electrochemiluminescence.

Angew Chem Int Ed Engl

December 2024

College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou 363000, China.

The type of coordinated N atoms in the metal-N coordination structure is of paramount importance to the catalytic property of N-modified carbon-based single-atom catalysts (SACs). Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful tool for analyzing the coordination environments of SACs. Despite its efficacy, the limited availability of synchrotron light sources and the complexity of data analysis have constrained its broader application in identifying metal-N coordination types within SACs.

View Article and Find Full Text PDF

Degradation of molybdenum disulfide through cascade reactions with hydrogen peroxide in aqueous system.

J Hazard Mater

December 2024

Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China. Electronic address:

Transformation is a crucial process determining the lifespan and risk of MoS nanomaterial during usage and after disposal. This study revealed the degradation of MoS in the presence of HO using experimental and computational methods. Experimental results showed that MoS nanosheets were degraded by 45.

View Article and Find Full Text PDF

One grand challenge for deploying porous carbons with embedded metal-nitrogen-carbon (M-N-C) moieties as platinum group metal (PGM)-free electrocatalysts in proton-exchange membrane fuel cells is their fast degradation and inferior activity. Here, we report the modulation of the local environment at Fe-N sites via the application of atomic Sn-N sites for simultaneously improved durability and activity. We discovered that Sn-N sites not only promote the formation of the more stable D2 FeNC sites but also invoke a unique D3 SnN-FeN site that is characterized by having atomically dispersed bridged Sn-N and Fe-N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!