The morphogen pathways Wnt, hedgehog, and Notch are key regulators of organ development and tissue homeostasis. In adults, the tightly regulated activity of morphogen pathways is essential for cell renewal and tissue regeneration. Loss of control and persistent activation of morphogen pathways, however, can lead to a variety of diseases, including malignancy and fibrotic disorders. In recent years, pathological activation of Wnt, hedgehog, and Notch pathways have been described in systemic sclerosis (SSc) and other fibrotic diseases. Experimental models reveal that morphogen pathways drive fibroblast activation and collagen release. In these model systems, genetic or pharmacological blockade of morphogen pathways inhibits collagen release and reduces experimental fibrosis. Importantly, inhibitors for Wnt, hedgehog, and Notch are already in clinical evaluation, thereby emphasizing the translational implications of these findings. Further experimental studies, however, should deepen our knowledge before initiating clinical trials with inhibitors of morphogen pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11926-012-0299-6 | DOI Listing |
Curr Top Dev Biol
January 2025
Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States. Electronic address:
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.
View Article and Find Full Text PDFJ Psychiatr Res
January 2025
Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52246, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA. Electronic address:
Prenatal stress is a risk factor for neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). However, how early stress modification of brain development contributes to this pathophysiology is poorly understood. Ventral forebrain regions such as dorsal striatum are of particular interest: dorsal striatum modulates movement and cognition, is altered in NDDs, and has a primarily GABAergic population.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish.
View Article and Find Full Text PDFCells Dev
January 2025
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT, United States of America; Jackson Laboratory, Farmington, CT, United States of America. Electronic address:
The maternal-fetal interface has long been considered as a frontier for an evolutionary arms race due to the close juxtaposition of genetically distinct tissues. In hemochorial species with deep placental invasion, including in humans, maternal stroma prepares its defenses against deep trophoblast invasion by decidualization, a differentiation process characterized by increased stromal cell matrix production, and contractile force generation. Decidualization has evolved from an ancestral wound healing response of fibroblast activation by the endometrial stroma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!