Take the shortcut: The synthesis of core-modified meso aryl hexaphyrins with an internal thiophene bridge is reported. Introduction of the thiophene bridge alters the electronic structure as well as the π-electron circuit, resulting in increases in singlet lifetime (τ(s)) and the two-photon absorption (TPA) cross-section. Furthermore, for the sulfur derivative, the internal bridging thiophene participates in a π-electron conjugation pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201203737 | DOI Listing |
Bioorg Med Chem
January 2025
School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research, Zunyi Medical University, Zunyi, Guizhou 563003, PR China. Electronic address:
A series of aggregation-induced emission luminogens (AIEgens) with donor-π-acceptor (D-π-A) architecture were rationally designed and synthesized through π-bridge engineering for dual-modal photodynamic and photothermal therapy. The AIEgens (TPT, TFT, and TTT) were constructed using methoxy-substituted tetraphenylene as the electron donor and tricyanofuran as the electron acceptor, connected via different π-bridges (phenyl, furan, or thiophene). These compounds exhibited red-shifted absorption (460-545 nm) and emission (712-720 nm) with remarkable aggregation-induced emission characteristics.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:
A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.
View Article and Find Full Text PDFChemistry
January 2025
Hunan Normal University, Chemistry, Yue Lu Qu Lushan Road 36, 410081, Changsha, CHINA.
In order to examine the effects of the fused heterole on the electronic properties of aromatic and antiaromatic smaragdyrins, 2,3-thiophene- and 2,3-indole-fused [20]smaragdyrins were synthesized by Suzuki-Miyaura coupling and subsequent oxidative fusion reaction, and were reduced with NaBH4 to the corresponding [22]smaragdyrins. Fused-thiophene- and fused-pyrrole-bridged [20]- and [22]smaragdyrin dimers were also synthesized in the similar manner. The installed fused heteroles mitigate the paratropic ring current of the [20]smaragdyrin but exert only minor effects on the diatropic ring current of the [22]smaragdyrin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Conjugated polymer donors have always been one of the important components of organic solar cells (OSCs), particularly those featuring simple synthetic routes, proper energy levels, and appropriate aggregation behavior. In this work, we employed a nonfused electron-deficient building block, dicyanobithiophene (2CT), for constructing high-performance donors. Combining this with side-chain engineering, two novel halogen-free polymer donors, PB2CT-BO and PB2CT-HD, were reported.
View Article and Find Full Text PDFNat Commun
January 2025
National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.
Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!