Dicentrarchus labrax migrates between sea (SW), brackish and fresh water (FW) where chloride concentrations and requirements for chloride handling change: in FW, fish absorb chloride and restrict renal losses; in SW, they excrete chloride. In this study, the expression and localization of ClC-3 and Na(+)/K(+)-ATPase (NKA) were studied in fish adapted to SW, or exposed to FW from 10 min to 30 days. In gills, NKA-α1 subunit expression transiently increased from 10 min and reached a stabilized intermediate expression level after 24 h in FW. ClC-3 co-localized with NKA in the basolateral membrane of mitochondria-rich cells (MRCs) at all conditions. The intensity of MRC ClC-3 immunostaining was significantly higher (by 50 %) 1 h after the transfer to FW, whereas the branchial ClC-3 protein expression was 30 % higher 7 days after the transfer as compared to SW. This is consistent with the increased number of immunopositive MRCs (immunostained for NKA and ClC-3). However, the ClC-3 mRNA expression was significantly lower in FW gills. In the kidney, after FW transfer, a transient decrease in NKA-α1 subunit expression was followed by significantly higher stable levels from 24 h. The low ClC-3 protein expression detected at both salinities was not observed by immunocytochemistry in the SW kidney; ClC-3 was localized in the basal membrane of the collecting ducts and tubules 7 and 30 days after transfer to FW. Renal ClC-3 mRNA expression, however, seemed higher in SW than in FW. The potential role of this chloride channel ClC-3 in osmoregulatory and osmosensing mechanisms is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-012-0737-9 | DOI Listing |
Unlabelled: All eukaryotes utilize regulated secretion to release molecular signals packaged in secretory granules for local and remote signaling. An anion shunt conductance was first suggested in secretory granules of bovine chromaffin cells nearly five decades ago. Biochemical identity of this conductance remains undefined.
View Article and Find Full Text PDFLife (Basel)
August 2024
Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
Nat Commun
August 2024
Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy.
View Article and Find Full Text PDFPharmazie
May 2024
Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Gunma, Japan.
We examined the mechanism by which 24()-ethyllophenol (MAB28) isolated from the branches of caused neurite outgrowth in rat pheochromocytoma cells (PC12). MAB28 significantly promoted neurite outgrowth to a similar degree as the positive control, nerve growth factor (NGF). After incubation with MAB28 in PC12 cells, phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and cyclic AMP response element-binding protein was detected, but the time course of phosphorylation was different from that induced by NGF.
View Article and Find Full Text PDFLeukemia
July 2024
IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico "Sant'Orsola-Malpighi", and Department of Medical and Surgical Sciences - University of Bologna, Bologna, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!