Acoustofluidics 22: multi-wavelength resonators, applications and considerations.

Lab Chip

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Published: February 2013

One important niche for multi-wavelength resonators is the filtration of suspensions containing very high particle concentration. For some applications, multi-wavelength ultrasound enhanced sedimentation filters are second only to the centrifuge in efficiency but, unlike the centrifuge they are easily adapted for continuous flow. Multi-wavelength resonators are also an obvious consideration when half-wavelength chambers are too small for a specific application. Unfortunately the formula, bigger = higher-throughput, does not scale linearly. Here we describe the relationships between chamber size and throughput for acoustic, electrical, flow and thermal convection actions, allowing the user to define initial parameters for their specific applications with some confidence. We start with a review of some of the many forms of multi-wavelength particle manipulation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc41206cDOI Listing

Publication Analysis

Top Keywords

multi-wavelength resonators
12
acoustofluidics multi-wavelength
4
resonators applications
4
applications considerations
4
considerations niche
4
multi-wavelength
4
niche multi-wavelength
4
resonators filtration
4
filtration suspensions
4
suspensions high
4

Similar Publications

Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:

The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.

View Article and Find Full Text PDF

Holographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.

View Article and Find Full Text PDF

Multi-wavelength emission fluorescent manganese-nitrogen co-doped carbon dots (Mn, N co-doped CDs) were synthesized by solvothermal method using β-cyclodextrin, O-phenylenediamine, and manganese chloride as raw materials. The prepared Mn, N co-doped CDs were used as fluorescent nanosensing platforms for the detection of metal ions and biomolecules and were found to be capable of fluorescence detection of tannic acid (TA) and hafnium (Hf) ion at 320, 380, and 480 nm excitation wavelengths with multi-response linear ranges of 0.7 ~ 1.

View Article and Find Full Text PDF

Si metasurface supporting multiple quasi-BICs for degenerate four-wave mixing.

Nanophotonics

August 2024

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Article Synopsis
  • Dielectric metasurfaces with quasi-bound states in the continuum (qBICs) can boost field enhancement through narrow resonances in the visible and near-infrared ranges.
  • A new silicon-on-silica metasurface design supports up to four qBIC resonances by using an elliptical cylinder array with varied symmetry-breaking shapes.
  • The study showcases the nonlinear process of four-wave mixing and highlights the potential applications in areas like information multiplexing and multi-wavelength sensing using the unique geometric control of qBICs.
View Article and Find Full Text PDF

One-dimensional (1D) gratings can control the intensity and direction of fluorescence emission, which are widely applied in biological detection. However, they are limited in bio-detection due to the small region for light-matter interaction. In this work, we propose a microfluidic channel with a dual-grating structure, which, as shown by numerical simulations, has excellent directional fluorescence enhancement, with an enhancement of more than 100-fold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!