Phosphorylation of endothelial nitric oxide synthase (eNOS) is an important regulator of its enzymatic activity. We generated knockin mice expressing phosphomimetic (SD) and unphosphorylatable (SA) eNOS mutations at S1176 to study the role of eNOS phosphorylation. The single amino acid SA mutation is associated with hypertension and decreased vascular reactivity, while the SD mutation results in increased basal and stimulated endothelial NO production. In addition to these vascular effects, modulation of the S1176 phosphorylation site resulted in unanticipated effects on metabolism. The eNOS SA mutation results in insulin resistance, hyperinsulinemia, adiposity, and increased weight gain on high fat. In contrast, the eNOS SD mutation is associated with decreased insulin levels and resistance to high fat-induced weight gain. These results demonstrate the importance of eNOS in regulation of insulin sensitivity, energy metabolism, and bodyweight regulation, and suggest eNOS phosphorylation as a novel target for the treatment of obesity and insulin resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576142PMC
http://dx.doi.org/10.1016/j.bbrc.2012.12.110DOI Listing

Publication Analysis

Top Keywords

enos phosphorylation
12
enos
8
insulin sensitivity
8
mutation associated
8
enos mutation
8
insulin resistance
8
weight gain
8
insulin
5
phosphorylation serine
4
serine 1176
4

Similar Publications

Ventricular arrhythmias induced by ischemia/reperfusion injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction. This study investigated the protective effects of the β2-adrenergic receptor (β2-AR) agonist clenbuterol against ischemia/reperfusion-induced arrhythmias and the underlying mechanism. Anesthetized rats were subjected to 10-min left coronary artery occlusion and 10-min reperfusion in vivo.

View Article and Find Full Text PDF

The lncRNA DSCR9 is modulated in pulmonary arterial hypertension endothelial cell models and is associated with alterations in the nitric oxide pathway.

Vascul Pharmacol

January 2025

Department of Internal Medicine, University of Genova, Genova, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy. Electronic address:

Long non-coding RNA (lncRNA) may be involved in dysfunction of pulmonary artery endothelial cells (PAEC) and, thus, in pulmonary arterial hypertension (PAH) pathobiology. We screened the RNA expression profile of commercial human PAEC (hPAEC) exposed to increased hydrostatic pressure, and found that the lncRNA Down syndrome critical region 9 (DSCR9) was the most regulated transcript (log2FC 1.89 vs control).

View Article and Find Full Text PDF

Receptors for the vasoactive adipokine apelin, termed APJ receptors, are G-protein-coupled receptors and are widely expressed throughout the cardiovascular system. APJ receptors can also signal via G-protein-independent pathways, including G-protein-coupled-receptor kinase 2 (GRK2), which inhibits nitric oxide synthase (eNOS) activity and nitric oxide (NO) production in endothelial cells. Apelin causes endothelium-dependent, NO-mediated relaxation of coronary arteries from normotensive animals, but the effects of activating APJ receptor signaling pathways in hypertensive coronary arteries are largely unknown.

View Article and Find Full Text PDF

Introduction: The pathogenic role of nitric oxide (NO) signaling during development of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is currently unclear. We characterized vasomotor function and its relationship to the activity of the NO-generating enzymes in mice with early onset progressively severe MFS.

Methods: Wire myography, immunoblotting, measurements of aortic NO and superoxide levels were used to compare vasomotor function, contractile-protein levels, and the activity of endothelial and inducible NO synthase (eNOS and iNOS, respectively) in ascending thoracic aortas of Fbn1mgR/mgR mice relative to wild type (WT) littermates.

View Article and Find Full Text PDF

Glomerular endothelial cells (GECs) are pivotal in developing glomerular sclerosis disorders. The advancement of focal segmental glomerulosclerosis (FSGS) is intimately tied to disruptions in lipid metabolism. Sphingosine-1-phosphate (S1P), a molecule transported by high-density lipoproteins (HDL), exhibits protective effects on vascular endothelial cells by upregulating phosphorylated endothelial nitric oxide synthase (p-eNOS) and enhancing nitric oxide (NO) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!