Potential use of siRNA as therapeutic agent has elicited a great deal of interest. However, insufficient cellular uptake and poor stability limited its application in therapeutics. In our earlier study, we prepared PLGA nanoparticles for effective delivery of siRNA targeting Bcl-2 gene to block its expression. Purpose of the present study was to improve effectiveness of PLGA nanoformulation of siRNA targeting anti-apoptotic Bcl-2 gene through chitosan coating. We prepared chitosan coated PLGA nanoparticles by using the double emulsion solvent diffusion (DESE) method. Characterization of prepared chitosan coated nanoformulation was done followed by cytotoxicity studies, expression studies and in vivo studies. Particle size of chitosan coated nanoparticles was found to be increased compared to PLGA nanoparticles from 244 to 319 nm. Surface charge of chitosan coated nanoparticles was found to be positive facilitating transfection of nanoformulation into cells. In vitro studies indicated increased transfection of nanoparticles resulting in effective silencing of Bcl-2. Marked apoptotic lesions were observed in nuclear staining studies. On comparison of the results from the present study with those of previous study, it was found that the extent of silencing of Bcl-2 gene by PLGA nanoformulation has improved significantly through chitosan coating. In vivo studies showed significant tumor regression in animals treated with chitosan coated PLGA nanoformulation of siRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2012.12.017DOI Listing

Publication Analysis

Top Keywords

chitosan coated
20
plga nanoformulation
16
nanoformulation sirna
12
sirna targeting
12
chitosan coating
12
plga nanoparticles
12
bcl-2 gene
12
targeting anti-apoptotic
8
anti-apoptotic bcl-2
8
chitosan
8

Similar Publications

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects.

View Article and Find Full Text PDF

This study investigated the efficacy of an innovative edible coating, composed of fungal chitosan and alginate, functionalized with LC03, in both free and microencapsulated forms, to extend the shelf life and enhance the nutritional value of strawberries. LC03 cells were successfully encapsulated in alginate microparticles (MAL) and further coated with chitosan (MALC), resulting in enhanced protection (cell reduction below 1.4 CFU/mL), viability (8.

View Article and Find Full Text PDF

Prickly pear consumption is increasing across the world due to its rich variety of nutrients and bioactive compounds. Yet, it is a seasonal and highly perishable fruit, and the application of edible coatings emerges as an alternative to extend its shelf life. In this work, the effects of alginate, starch, chitosan, and pectin as coatings on the physicochemical, bioactive, microbiological, and textural properties of two prickly pear varieties (orange and red), kept under refrigeration (5 ± 2 °C) were evaluated for 6 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!