Background: Influenza viruses cause highly contagious acute respiratory illnesses with significant mortality, especially among young children, elderly people, and individuals with serious medical conditions. This encourages the development of new treatments for human flu. Biotherapies are diluted solutions prepared from biological products compounded following homeopathic procedures.

Objectives: To develop a biotherapy prepared from the infectious influenza A virus (A/Aichi/2/68 H3N2) and to verify its in vitro response.

Methods: The ultradiluted influenza virus solution was prepared in the homeopathic dilution 30dH, it was termed Influenzinum RC. The cellular alterations induced by this preparation were analyzed by optical and electron microscopy, MTT and neutral red assays. Glycolytic metabolism (PFK-1) was studied by spectrophotometric assay. Additionally, the production of tumor necrosis factor-α (TNF-α) by J774.G8 macrophage cells was quantified by ELISA before and after infection with H3N2 influenza virus and treatment.

Results: Influenzinum RC did not cause cytotoxic effects but induced morphological alterations in Madin-Darby canine kidney (MDCK) cells. After 30 days, a significant increase (p < 0.05) in mitosis rate was detected compared to control. MDCK mitochondrial activity was changed after treatment for 10 and 30 days. Treatment significantly diminished (p < 0.05) PFK-1 activity. TNF-α in biotherapy-stimulated J774.G8 macrophages indicated a significant (p < 0.05) increase in this cytokine when the cell supernatant was analyzed.

Conclusion: Influenzinum RC altered cellular and biochemical features of MDCK and J774G8 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.homp.2012.10.003DOI Listing

Publication Analysis

Top Keywords

influenza virus
16
virus solution
8
influenza
5
h3n2 homeopathic
4
homeopathic influenza
4
virus
4
solution modifies
4
modifies cellular
4
cellular biochemical
4
biochemical aspects
4

Similar Publications

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

This study prospectively collected the clinical data, information on respiratory pathogens, and laboratory findings of children with Mycoplasma pneumoniae (M. pneumonia) infection who were hospitalized at the First Affiliated Hospital of Anhui Medical University during the M. pneumoniae outbreak in Hefei City, Anhui Province, China, between October 2023 and December 2023.

View Article and Find Full Text PDF

Background: Patients with congenital heart defects (CHDs) are at higher risk for infectious diseases. This may partly be due to frequent hospital stays and the associated exposure to pathogens. This study aims to provide a comprehensive overview of immunisation coverage among twins in which at least one twin has CHD.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) causes a substantial health burden among infants and older adults. Prefusion F protein-based vaccines have shown high efficacy against RSV disease in clinical trials, offering promise for mitigating this burden through maternal and older adult immunization. Employing an individual-based model, we evaluated the impact of RSV vaccination on hospitalizations and deaths in 13 high-income countries, assuming that the vaccine does not prevent infection or transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!