Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: The purpose of the study was to assess the usefulness of slice encoding for metal artifact correction (SEMAC) in 3.0-T magnetic resonance (MR) in minimizing metallic artifacts in patients with spinal prostheses.
Materials And Methods: Institutional review board approval and informed consent were obtained for this study. Twenty-seven spine MR scans were performed with metal artifact reduction SEMAC between May 2011 and July 2012 in patients with metallic devices. The MR scans were performed on a 3-T MR system (Achieva; Philips Healthcare, Best, the Netherlands) including SEMAC-corrected T2-weighted axial/sagittal images and two-dimensional fast spin echo (FSE) axial/sagittal images. The SEMAC-corrected images were compared to conventional T2-weighted FSE images. Two musculoskeletal radiologists qualitatively analyzed the images in terms of visualization of the pedicle, vertebral body, dural sac, intervertebral disc, intervertebral neural foramina, screws and metallic artifacts. The paired images were rated using a 5-point scale. P values less than .05 were considered to indicate statistically significant differences.
Results: The SEMAC-corrected MR images significantly reduced the metal-related artifacts. The T2-weighted images with SEMAC sequences enabled significantly improved periprosthetic visualizations of the pedicle, vertebral body, dural sac and neural foramina, with the exception of the intervertebral disc (P<.05). In addition, there was significant improvement in prosthesis visualization (P<.05).
Conclusion: MR images with SEMAC can reduce metal-related artifacts, providing improved delineation of the prosthesis and periprosthetic region. However, for the evaluation of the intervertebral disc, the SEMAC-corrected MR images showed no significant benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mri.2012.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!