Background: The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality.
Results: We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic) bond at the Δ12 position.
Conclusions: In this study, we isolated an unusually large FAD2 gene family with 11 members from safflower. The seed expressed FAD2 oleate Δ12 desaturase genes identified in this study will provide candidate targets to manipulate the oleic acid level in safflower seed oil. Further, the divergent FAD2 enzymes with novel functionality could be used to produce rare fatty acids, such as crepenynic acid, in genetically engineered crop plants that are precursors for economically important phytoalexins and oleochemical products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554562 | PMC |
http://dx.doi.org/10.1186/1471-2229-13-5 | DOI Listing |
Microb Cell Fact
January 2025
Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
Background: In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
(β-ketoacyl-acyl carrier protein (ACP) synthases II), (fatty acid thioesterases), (stearoyl-ACP desaturase), and (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained.
View Article and Find Full Text PDFBMC Biotechnol
December 2024
Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine.
Background: False flax, or gold-of-pleasure (Camelina sativa) is an oilseed that has received renewed research interest as a promising vegetable oil feedstock for liquid biofuel production and other non-food uses. This species has also emerged as a model for oilseed biotechnology research that aims to enhance seed oil content and fatty acid quality. To date, a number of genetic engineering and gene editing studies on C.
View Article and Find Full Text PDFAnim Nutr
December 2024
State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
This study aimed to examine the impact of dietary carbohydrate to lipid (CHO/L) ratio on the growth, reproductive, and offspring performance of broodstock yellow catfish, and to elucidate the metabolic differences between mothers and offspring using lipidomics. Five isonitrogenous and isoenergetic diets with varying CHO/L ratios (0.65, 1.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
Seabuckthorn ( Linn.) is a commonly utilized medicinal crop with various applications in the treatment of different diseases. Two particularly noteworthy nutrients in seabuckthorn fruit are seabuckthorn oil and flavonoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!