Kelvin probe force microscopic imaging of the energy barrier and energetically favorable offset of interfaces in double-junction organic solar cells.

ACS Appl Mater Interfaces

Center for Advanced Photovoltaics, Department of Electrical Engineering and Computer Sciences, South Dakota State University, Brookings, South Dakota 57006, USA.

Published: February 2013

A double-junction polymer solar cell (PSC) has attracted extensive attention as a promising approach to increasing efficiency. Tunneling/recombination interlayers between subcells play a critical role in double-junction PSCs. Interlayers include electron-transport layers (ETLs) such as Nb₂O₅, ZnO, and TiO(x) and hole-transport layers (HTLs) including PEDOT:PSS. These materials have all been used as interlayer materials, but it remains unclear which one is better than the other. Kelvin probe force microscopy (KFM) was used to identify the energy barrier and energetically favorable energy offset at the interfaces of acceptor-ETL (e.g., PCBM-Nb₂O₅, PCBM-ZnO, and PCBM-TiO(x)) and donor-HTL (e.g., MDMO-PPV/PEDOT:PSS). Here the interface refers to the junction of two materials, formed by drop-casting one on top of other. The interface is buried and is therefore not accessible to the KFM probe. The energy barrier for electron transport from PCBM to ETL was found at ∼0.20, ∼0.12, and ∼0.012 eV at the PCBM-Nb₂O₅, PCBM-ZnO, and PCBM-TiO(x) interfaces, respectively. Hole transport from the donor polymer to PEDOT:PSS was found to be energetically favorable with an energy offset of ∼0.14 eV to facilitate hole transport. The thickness independences of the energy barrier and energetically favorable energy offset at the interfaces of acceptor-ETL and donor-HTL were also observed. This work will provide guidance for researchers to identify and select appropriate materials as interlayers in double-junction PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am302235wDOI Listing

Publication Analysis

Top Keywords

energy barrier
16
energetically favorable
16
barrier energetically
12
offset interfaces
12
favorable energy
12
energy offset
12
kelvin probe
8
probe force
8
double-junction pscs
8
interfaces acceptor-etl
8

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

The Jordan Valley (JV) is a critical region where the interplay of water, energy, food, and ecosystem (WEFE) dynamics presents both challenges and opportunities for sustainable development and climate change mitigation and adaptation. In such a transboundary river basin with acute nexus problems and a long history of conflicts, it is essential that conscious efforts are made to pluralize the debate and actively encourage stakeholders' empowerment, participation and fair collaboration in strategic planning. An integrated framework for participatory strategic planning in the WEFE nexus is proposed, which has been developed in the context of the JV case study.

View Article and Find Full Text PDF

Migration of vanadium oxide nanoparticles in saturated porous media.

J Hazard Mater

January 2025

MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.

Vanadium oxides nanoparticles (VO-NPs) as emerging functional materials are widely applied in high-technology industries. However, their environmental behaviors remain largely known. In this study, the migration of three common VO-NPs (VO VO, and VO) in saturated porous media has been investigated.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!