Study Objectives: Sleep disturbances cause neurobehavioral performance and daytime functioning impairments. Postpartum women experience high levels of sleep disturbance. Thus, the study objective was to describe and explore the relation between neurobehavioral performance and sleep among women during the early postpartum period.
Design: Longitudinal field-based study.
Participants: There were 70 primiparous women and nine nulliparous women in a control group.
Interventions: None.
Methods And Results: During their first 12 postpartum weeks, 70 primiparous women wore continuous wrist actigraphy to objectively monitor their sleep. Each morning they self-administered the psychomotor vigilance test (PVT) to index their neurobehavioral performance. Nine nulliparous women in a control group underwent the same protocol for 12 continuous weeks. Postpartum PVT mean reciprocal (1/RT) reaction time did not differ from that of women in the control group at postpartum week 2, but then worsened over time. Postpartum slowest 10% 1/RT PVT reaction time was significantly worse than that of women in the control group at all weeks. Despite improvements in postpartum sleep, neurobehavioral performance continued to worsen from week 2 through the end of the study. Across the first 12 postpartum weeks, PVT measures were more frequently associated with percent sleep compared with total sleep time, highlighting the deleterious consequences of sleep disruption on maternal daytime functioning throughout the early postpartum period.
Conclusions: Worsened maternal neurobehavioral performance across the first 12 postpartum weeks may have been influenced by the cumulative effects of sleep disturbance. These results can inform future work to identify the particular sleep profiles that could be primary intervention targets to improve daytime functioning among postpartum women, and indicate need for further research on the effectiveness of family leave policies. The time when postpartum women return to control-level daytime functioning is unknown.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3524545 | PMC |
http://dx.doi.org/10.5665/sleep.2304 | DOI Listing |
Sudan J Paediatr
January 2024
Psychology Department, Gezira State Ministry of Health, Khartoum, Sudan.
Patients with epilepsy are at significant risk for cognitive impairment and behavioural abnormalities. The aim of this study was to assess the learning abilities and school performance of epileptic children attending Wad Medani Children Teaching Hospital, Gezira State, Sudan. This was a prospective cross-sectional case-control facility-based study.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy.
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh.
Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.
Brain Res Bull
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:
Background: Ischemic stroke (IS) remains a significant global health burden, necessitating the development of novel therapeutic strategies. This study aims to systematically evaluate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) on IS outcomes in rodent models.
Methods: A comprehensive literature search was conducted across multiple databases to identify studies investigating the effects of MSC-Exos on rodent models of IS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!