A dyad complex has been constructed as a soluble molecular model of a heterogeneous cobalt-based oxygen-evolving catalyst (Co-OEC). To this end, the Co(4)O(4) core of a cobalt-oxo cubane was covalently appended to Re(I) photosensitisers. The resulting adduct was characterised both in the solid state (by X-ray diffraction) and in solution using a variety of techniques. In particular, the covalent attachment of the Re(I) moieties to the Co(4)O(4) core promotes emission quenching of the Re(I) photocentres, with implications for the energy and electron transduction process of Co-OEC-like catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200682DOI Listing

Publication Analysis

Top Keywords

oxygen-evolving catalyst
8
co4o4 core
8
photo-active cobalt
4
cobalt cubane
4
cubane model
4
model oxygen-evolving
4
catalyst dyad
4
dyad complex
4
complex constructed
4
constructed soluble
4

Similar Publications

The nitrogenase mechanism: new roles for the dangler?

J Biol Inorg Chem

December 2024

Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, 147-75, Pasadena, CA, 91125, USA.

Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II.

View Article and Find Full Text PDF

An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S and S states revealed by serial femtosecond crystallography.

Biochim Biophys Acta Bioenerg

December 2024

Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The MnOCa cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O and releasing protons to the lumen and electrons to drive PSII reactions.

View Article and Find Full Text PDF

Understanding the basic structure of the oxygen-evolving complex (OEC) in photosystem II (PS-II) and the water oxidation mechanism can aid in the discovery of more efficient and sustainable catalysts for water oxidation. In this context, we present evidence of the formation of a [(TPA)Mn(O)(μ-O)Ce(NO)] () complex (TPA = tris(pyridyl-2-methyl)amine) by adding aqueous ceric ammonium nitrate to an acetonitrile solution of the [(TPA)Mn] () complex. This unique intermediate () was analyzed by using various spectroscopic techniques and electrospray ionization mass spectrometry.

View Article and Find Full Text PDF

The activity and stability of a heterogeneous water oxidation catalyst inspired by the Photosystem II - Oxygen Evolving Center (PSII-OEC) is reported. Ca-doped birnessite MnO supported on a liquid crystalline reduced graphene oxide (LCrGO) substrate exhibited unprecedented performance for an abiological catalyst at pH 7, including an exceedingly low onset overpotential of 0.52 V (.

View Article and Find Full Text PDF

Iron and Nickel Substituted Perovskite Cobaltites for Sustainable Oxygen Evolving Anodes in Alkaline Environment.

ChemSusChem

September 2024

Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, Gaustadalléen 21, NO-0349, Oslo, Norway.

Perovskite oxides have great flexibility in their elemental composition, which is accompanied by large adjustability in their electronic properties. Herein, we synthesized twelve perovskite oxide-based catalysts for the oxygen evolution reaction (OER) in alkaline media. The catalysts are based on the parent oxide perovskite BaGdLaCoO (BGLC587) and are synthesized through the sol-gel citrate synthesis route.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!