The enhancement of the electrical conductivity by doping is important in hematite (α-Fe(2)O(3)) photoanodes for efficient solar water oxidation. However, in spite of many successful demonstrations using extrinsic dopants, such as Sn, Ti, and Si, the achieved photocurrent is still lower than the practical requirement. There is still lack of our understanding of how intrinsic oxygen defects can change the photocurrent and interact with the extrinsic dopants. In this study, we systematically investigate the interplay of oxygen vacancies and extrinsic Sn dopants in the context of photoanodic properties. As a result, we demonstrate that the controlled generation of oxygen vacancies can activate the photoactivity of pure hematite remarkably and further enhance the Sn doping effects synergistically. Furthermore, the correlated behavior of oxygen vacancies and Sn dopants is closely linked to the variation of electrical conductance and results in the optimum concentration region to show the high photocurrent and low onset voltage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp44352j | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recent advancements in colloidal synthesis have enabled precise control of extrinsic dopants in semiconductor nanocrystals (NCs), enriching our understanding of dopant-exciton interactions and opening new avenues for controlling NC properties. However, the manipulation of intrinsic defects in colloidal NCs remains challenging. Here, we demonstrate regulation of oxygen vacancy concentration and location in γ-GaO NCs, significantly altering their photoluminescent properties.
View Article and Find Full Text PDFAdv Sci (Weinh)
November 2024
Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK.
J Hazard Mater
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
γ-MnO precoated lead (Pb)-based anodes have shown high initial activity in heavy-metal pollution reduction and production improvement for zinc electrowinning in laboratory. However, the accumulated impurity ions (M) in industrial MnO-precursors restrict its industrial application. Herein, the heterostructure-induced rich oxygen-vacancies for M-MnO and its higher activity (Pb/Co-MnO>Pb/Ni-MnO>Pb/Fe-MnO ≈Pb/Cu-MnO>Pb/MnO) was reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!