Molecular signatures are a powerful approach to characterize novel small molecules and derivatized small molecule libraries. While new experimental techniques are being developed in diverse model systems, informatics approaches lag behind these exciting advances. We propose an analysis pipeline for signature based drug annotation. We develop an integrated strategy, utilizing supervised and unsupervised learning methodologies that are bridged by network based statistics. Using this approach we can: 1, predict new examples of drug mechanisms that we trained our model upon; 2, identify "New" mechanisms of action that do not belong to drug categories that our model was trained upon; and 3, update our training sets with these "New" mechanisms and accurately predict entirely distinct examples from these new categories. Thus, not only does our strategy provide statistical generalization but it also offers biological generalization. Additionally, we show that our approach is applicable to diverse types of data, and that distinct biological mechanisms characterize its resolution of categories across different data types. As particular examples, we find that our predictive resolution of drug mechanisms from mRNA expression studies relies upon the analog measurement of a cell stress-related transcriptional rheostat along with a transcriptional representation of cell cycle state; whereas, in contrast, drug mechanism resolution from functional RNAi studies rely upon more dichotomous (e.g., either enhances or inhibits) association with cell death states. We believe that our approach can facilitate molecular signature-based drug mechanism understanding from different technology platforms and across diverse biological phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945388 | PMC |
http://dx.doi.org/10.1039/c2mb25459j | DOI Listing |
Orthop Surg
January 2025
Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.
Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.
View Article and Find Full Text PDFChemMedChem
January 2025
Charles University Faculty of Pharmacy in Hradec Kralove: Univerzita Karlova Farmaceuticka fakulta v Hradci Kralove, Dept. of pharmaceutical chemistry and pharmaceutical analysis, Ak. Heyrovskeho 1203/8, 50003, Hradec Kralove, Czech Republic, CZECHIA.
Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery.
View Article and Find Full Text PDFCirc Res
January 2025
Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).
Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.
View Article and Find Full Text PDFRev Med Suisse
January 2025
Service d'oncologie, Hôpitaux universitaires de Genève, 1211 Genève 14.
New therapeutic agents in oncology are emerging rapidly, both in terms of the number of approved drugs and the technological and biological innovation of new treatments. Antibody-drug conjugates (ADC) offer a promising cancer therapy by specifically targeting tumor cells. ADC are composed of a monoclonal antibody recognizing the tumor cell via specific antigens, coupled with a potent cytotoxic agent that resembles classical chemotherapy.
View Article and Find Full Text PDFFront Immunol
January 2025
Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China.
Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!