The relative intensities of 16 prompt γ-rays from the (35)Cl(n,γ)(36)Cl reaction with a thermal neutron were precisely determined as secondary γ-ray intensity standards with HPGe detectors. The detection efficiencies were calibrated from 0.2 to 10.8 MeV using the standard sources (152)Eu and (56)Co and the (14)N(n,γ)(15)N reaction. We performed appropriate analyses for the evaluation of doublet peaks, subtraction of mixing with escape γ-rays and other corrections; consequently, the values were determined within 1% accuracy. Relative intensities in the range of 0.7 to 8.6 MeV are proposed as reliable secondary standards for 16 γ-rays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2012.11.008 | DOI Listing |
World J Surg
January 2025
Precision Medicine Program, Hoag Family Cancer Institute, Newport Beach, California, USA.
Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.
Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.
Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Institute of Agrifood Research and Technology (IRTA), Centre de La Ràpita, Crta. Poble Nou del Delta Km 5.5, 43540, la Ràpita, Spain.
The effect of different feeding habits on gut morphology and digestive function has been intensively studied during the last decades but sympatric closely related fishes are relatively rare objects of such studies. In the present study, we have identified both morphological and physiological changes in the digestive system of a sympatric pair of whitefish represented by "normal" Coregonus lavaretus pidschian (benthivorous) and "dwarf" C. l.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!