Background: Neurofibromatosis type 1 (NF1) is the most common genetic syndrome predisposing patients to various tumors due to dysregulation of the Ras signaling pathway. Recent research has shown NF1 patients also suffer a spectrum of bone pathologies. The pathogenesis of NF1 bone diseases is largely unknown. There is no current treatment. By Nf1 heterozygote (Nf1+/-) mice and Nf1 conditional knockout mice, we and other groups demonstrated abnormal osteoblast and osteoclast function due to dysregulation of Ras signaling. However, the specific downstream effector pathways linked to NF1 abnormal osteoblastogenesis and osteoclastogenesis have not been defined. In this study, we investigated the Ras downstream effector related with NF1 bone disease.

Methods: We used Nf1+/+ and Nf1+/- mice as normal and NF1 models. Bone stromal cells extracted from Nf1+/+ and Nf1+/- mice were induced osteoclasts. The osteoclast cell was stained by tartrate resistant acid phosphatase staining. The osteoclast cell number was counted and the surface area of osteoclast cells was calculated under the microscope. The mRNA of mammalian target of rapamycin (mTOR) was determined by quantitative reverse-transcription-polymerase chain reaction. The presence of ribosomal protein S6 kinase was determined by Western blotting.

Results: Compared with Nf1+/+ mice, Nf1+/- mice had about 20% more of osteoclast cells. These osteoclast cells were larger in size with more nuclei. Hyperactive mTOR was detected in Nf1+/- osteoclast cells. Inhibition of mTOR signaling by rapamycin in Nf1+/- osteoclasts abrogated abnormalities in cellular size and number.

Conclusion: mTOR pathway inhibition may represent a viable therapy for NF1 bone diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nf1+/- mice
16
osteoclast cells
16
nf1 bone
12
nf1
9
mammalian target
8
target rapamycin
8
neurofibromatosis type
8
dysregulation ras
8
ras signaling
8
bone diseases
8

Similar Publications

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

NF1 encodes the multifunctional tumour suppressor protein, neurofibromin, which is best known for its causative role in Neurofibromatosis type 1 and in regulating MAPK signaling. Neurofibromin, in a context-specific manner, is involved in various tumorigenic processes, including those in melanocytes. This study investigated whether NF1 loss can collaborate with oncogenic GNAQ to promote melanoma in the dermis or eyes, where the G alpha q pathway is almost always activated.

View Article and Find Full Text PDF

Efficient gene delivery admitted by small metabolites specifically targeting astrocytes in the mouse brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene delivery approach admitted by small metabolites (gDAM) for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM uses a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

The free-living amoeba (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!