Losses of functional opsin genes, short-wavelength cone photopigments, and color vision--a significant trend in the evolution of mammalian vision.

Vis Neurosci

Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, USA.

Published: March 2013

All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0952523812000429DOI Listing

Publication Analysis

Top Keywords

opsin genes
12
cone photopigments
8
gene families
8
eutherian mammals
8
sws1 opsin
8
short-wavelength cones
8
cone
6
mammals
5
species
5
losses functional
4

Similar Publications

Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

Genome assembly of a nocturnal butterfly (Macrosoma leucophasiata) reveals convergent adaptation of visual genes.

Commun Biol

December 2024

McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.

Nearly all animals exhibit a preferred period of daily activity (diel-niche), strongly influenced by the light environment. Vision is a sensory system that is strongly adapted to light, and evolutionary transitions to novel light environments can impose strong constraints on eye evolution, color, and motion vision. While the genetic and neural basis of visual adaptation are well-studied in a few model systems, our understanding across the tree of life remains incomplete.

View Article and Find Full Text PDF

Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference.

Int J Mol Sci

November 2024

Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico.

The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival.

View Article and Find Full Text PDF

Mature and immature female swordfish show different gonadal expression patterns of melatonin synthesis-related and opsin genes, indicating that seasonality affects gonadal circadian genes, especially through opsin modulation. The high energy demands of reproduction may cause mature female swordfish to become more susceptible to environmental stressors/changes, potentially affecting their health post-reproduction. The modulation of melatonin and opsin expression may also influence swordfish biology, impacting basal metabolism and stress responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!