Hematite-based photo-oxidation of water using transparent distributed current collectors.

ACS Appl Mater Interfaces

Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, USA.

Published: January 2013

High specific surface area transparent and conducting frameworks, fabricated by atomic layer deposition (ALD), were used as scaffolds for fabrication of equally high area, ALD-formed hematite structures for photo-oxidation of water to dioxygen. The frameworks offer high transparency to visible light and robust conductivity under harsh annealing and oxidizing conditions. Furthermore, they also make possible the spatially distributed collection of photocurrent from ultrathin coatings of hematite layers, enabling the formation of photoanodes featuring both large optical extinction and a hematite layer thickness nearly commensurate with the hole-collection distance. The distributed-current-collection approach increases the efficiency of water oxidation with hematite (by about a factor of 3 compared with an optimized flat electrode), is highly adaptable to future advances in thin film technology, and is further applicable to a multitude of nanostructures and optoelectronic applications that require ultrathin films without sacrificing optical thickness.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am302356kDOI Listing

Publication Analysis

Top Keywords

photo-oxidation water
8
hematite-based photo-oxidation
4
water transparent
4
transparent distributed
4
distributed current
4
current collectors
4
collectors high
4
high specific
4
specific surface
4
surface area
4

Similar Publications

Presence of microplastics during high rainfall events in the Cauvery River (South India): Ecological risk and cultural practices.

Environ Monit Assess

December 2024

Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520 Barrio la Laguna Ticomán, C.P.07340, Del. Gustavo A. Madero, México.

Rivers directly support the development of a region/country; however, globally, these aquatic regions are impacted by recent human activity. During a rainfall event, we monitored the baseline information on the spatial variability of microplastics (MPs) in the Cauvery River in South India. Forty surface water samples from two selected sites were collected between 27 September and 16 October 2022 during the commencement of monsoon which indicates 69 and 43 pieces L of MPs, respectively.

View Article and Find Full Text PDF

Cooperative photobiocatalytic processes have seen extensive potentials for the synthesis of both bulk and fine chemicals owing to their versatility, eco-friendliness, and cost-effectiveness. Nevertheless, developing a universal and effective synthetic strategy compatible with both catalytic systems remains challenging. In this study, we explored cationic liposomes as biocompatible photocatalyst encapsulation systems and combined them with bacteria overexpressing enzymes for two-step and three-step cascade reactions.

View Article and Find Full Text PDF

Water resource management has become a hot button issue in recent decades. Countries facing water shortages as a result to climate change must adapt their water supply. The reuse of wastewater treatment plant effluents is becoming increasingly common around the world.

View Article and Find Full Text PDF

Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (GF) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the GF-derived hygroscopicity parameter (κ) and ALWC increased with particle size, but displayed differing diurnal variations, with κ peaking around the midday, while ALWC peaking in the early morning.

View Article and Find Full Text PDF

Information on the detection of the presence and potential for degradation of synthetic polymers (SPs) under various environmental conditions is of increasing interest and concern to a wide range of specialists. At this stage, there is a need to understand the relationship between the main participants in the processes of (bio)degradation of SPs in various ecosystems (reservoirs with fresh and sea water, soils, etc.), namely the polymers themselves, the cells of microorganisms (MOs) participating in their degradation, and humic substances (HSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!