Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Abstract To improve the predictive ability and robustness of the NIR correction model of the soluble solid content (SSC) of apple, the reverse interval partial least squares method, genetic algorithm and the continuous projection method were implemented to select variables of the NIR spectroscopy of the soluble solid content (SSC) of apple, and the partial least squares regression model was established. By genetic algorithm for screening of the 141 variables of the correction model, prediction has the best effect. And compared to the full spectrum correction model, the correlation coefficient increased to 0.96 from 0.93, forecast root mean square error decreased from 0.30 degrees Brix to 0.23 degrees Brix. This experimental results show that the genetic algorithm combined with partial least squares regression method improved the detection precision of the NIR model of the soluble solid content (SSC) of apple.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!