Insoluble recombinant proteins are a major issue for both structural genomics and enzymology research. Greater than 30% of recombinant proteins expressed in Escherichia coli (E. coli) appear to be insoluble. The prevailing view is that insolubly expressed proteins cannot be easily solubilized, and are usually sequestered into inclusion bodies. However, we hypothesize that small molecules added during the cell lysis stage can yield soluble protein from insoluble protein previously screened without additives or ligands. We present a novel screening method that utilized 144 additive conditions to increase the solubility of recombinant proteins expressed in E. coli. These selected additives are natural ligands, detergents, salts, buffers, and chemicals that have been shown to increase the stability of proteins in vivo. We present the methods used for this additive solubility screen and detailed results for 41 potential drug target recombinant proteins from infectious organisms. Increased solubility was observed for 80% of the recombinant proteins during the primary and secondary screening of lysis with the additives; that is 33 of 41 target proteins had increased solubility compared with no additive controls. Eleven additives (trehalose, glycine betaine, mannitol, L-Arginine, potassium citrate, CuCl(2), proline, xylitol, NDSB 201, CTAB and K(2)PO(4)) solubilized more than one of the 41 proteins; these additives can be easily screened to increase protein solubility. Large-scale purifications were attempted for 15 of the proteins using the additives identified and eight (40%) were prepared for crystallization trials during the first purification attempt. Thus, this protocol allowed us to recover about a third of seemingly insoluble proteins for crystallography and structure determination. If recombinant proteins are required in smaller quantities or less purity, the final success rate may be even higher.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527557 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052482 | PLOS |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFIran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Unlabelled: Diabetic macular edema (DME) is a leading cause of visual impairment and blindness among diabetic patients, its prevalence is continuing to increase worldwide. Faricimab, a bispecific antibody, represents a new generation of treatments for DME.
Purpose: This study presents an indirect comparison of the effectiveness and safety of faricimab versus other treatment options for DME.
Purpose: This study evaluates the efficacy of intravitreal injections (IVI) of faricimab in patients with neovascular age-related macular degeneration (nAMD) and retinal pigment epithelium detachment (RPED) resistant to other anti-VEGF agents.
Material And Methods: The study included 61 patients (61 eyes) with nAMD previously treated with aflibercept and/or brolucizumab IVIs. Three groups were formed: group 1 received aflibercept IVI (32 eyes), group 2 received brolucizumab IVI (14 eyes), and group 3 received aflibercept followed by brolucizumab IVI (15 eyes).
Vestn Oftalmol
December 2024
Novosibirsk State Regional Hospital, Novosibirsk, Russia.
Purpose: This study evaluated the impact of phacoemulsification cataract surgery (PE) on anatomical and functional parameters, as well as the regimen and frequency of anti-VEGF injections in patients with neovascular age-related macular degeneration (nAMD) over a long-term period (up to 3 years).
Material And Methods: The study included 117 patients (117 eyes) diagnosed with nAMD and cataract, graded by LOCS: LOCS I (=56; 47.9%), LOCS II (=57; 48.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!