Numerous studies have suggested that an effective Hepatitis C Virus (HCV) vaccine must induce strong cytotoxic and IFN-γ+ T cell responses targeting the non-structural region of the virus. Most importantly, these responses must be able to migrate into and remain functional within the liver, an organ known to cause T cell tolerance. Using three novel HCV DNA vaccines encoding non-structural proteins NS4B, NS5A and NS5B, we assessed the ability of peripheral immunization to induce functional intrahepatic immunity both in the presence and absence of cognate HCV antigen expression within the liver. We have shown that these constructs induced potent HCV-specific CD4+ and CD8+ T cell responses in the spleen of C57BL/6 mice and that these responses were detected within the liver following peripheral immunization. Additionally, using a transfection method to express HCV antigen within the liver, we showed that intrahepatic HCV-specific T cells remained highly functional within the liver and retained the ability to become highly activated as evidenced by upregulation of IFN-γ and clearance of HCV protein expressing hepatocytes. Taken together, these findings suggest that peripheral immunization can induce potent HCV-specific T cell responses able to traffic to and function within the tolerant environment of the liver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528776 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0052165 | PLOS |
Acta Med Indones
October 2024
Hematology Division, Department of Internal Medicine, Faculty of Medicine, Padjadjaran University - Hasan Sadikin Hospital, Bandung, Indonesia.
Background: Monocytes are evolutionarily preserved innate immune cells that play essential roles in immune response regulation. Three activated monocyte subsets-classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++)-are associated with systemic lupus erythematosus (SLE) progression. This study aims to determine the association of monocyte subsets with SLE disease activity.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA. Electronic address:
Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account.
View Article and Find Full Text PDFCancer Lett
January 2025
Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China. Electronic address:
The programmed cell death 1 (PD-1)/PD-1 ligand 1 (PD-L1) axis mediates immune evasion of tumor, and targeting this axis has achieved some clinical benefits. The regulation of PD-1 expression in immune cells has been well studied. However, whether any other potential source of immune cell-expressed PD-1 exists remains unknown.
View Article and Find Full Text PDFDiagn Microbiol Infect Dis
January 2025
Clinical Laboratory Center, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, PR China. Electronic address:
The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends.
View Article and Find Full Text PDFZhonghua Fu Chan Ke Za Zhi
January 2025
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, State Key Laboratory of Female Fertility Promotion, National Clinical Research Center for Obstetric and Gynecologic Diseases, Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing100191, China.
To explore biomarkers for the efficacy of lymphocyte immunotherapy (LIT) treating women with unexplained recurrent spontaneous abortion (URSA). Serum samples from 24 URSA potients who received LIT were collected at Peking University Third Hospital from December 2014 to June 2015. Semiquantitative sandwich-based antibody arrays containing 40 cytokines were used to screen target immune cytokines in the peripheral blood of URSA patients before and after LIT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!