This phase II study (VEG20007; NCT00347919) with randomized and open-label components evaluated first-line lapatinib plus pazopanib therapy and/or lapatinib monotherapy in patients with human epidermal growth factor receptor type 2 (HER2)-positive advanced/metastatic breast cancer. Patients were enrolled sequentially into two cohorts: Cohort 1, patients were randomly assigned to lapatinib 1,000 mg plus pazopanib 400 mg or lapatinib 1,500 mg monotherapy; Cohort 2, patients received lapatinib 1,500 mg plus pazopanib 800 mg. The primary endpoint was week-12 progressive disease rate (PDR) for Cohort 1. The principal secondary endpoint was week-12 response rate (RR) for Cohort 2. Efficacy was assessed in patients with centrally confirmed HER2 positivity (modified intent-to-treat population [MITT]). The study enrolled 190 patients (Cohort 1, combination n = 77, lapatinib n = 73; Cohort 2, n = 40). The MITT population comprised n = 141 (Cohort 1) and n = 36 (Cohort 2). In Cohort 1, week-12 PDRs were 36.2 % (combination) versus 38.9 % (lapatinib; P = 0.37 for the difference). Week-12 RRs were 36.2 % (combination) versus 22.2 % (lapatinib). In Cohort 2, week-12 RR was 33.3 %. In Cohort 1, grade 3/4 adverse events (AEs) included diarrhea (combination, 9 %; lapatinib, 5 %) and hypertension (combination, 5 %; lapatinib, 0 %). Grades 3/4 AEs in Cohort 2 included diarrhea (40 %), hypertension (5 %), and fatigue (5 %). Alanine aminotransferase elevations >5 times the upper limit of normal occurred in Cohort 1 (combination, 18 %; lapatinib, 5 %) and Cohort 2 (20 %). Upon conclusion, the combination of lapatinib plus pazopanib did not improve PDR compared with lapatinib monotherapy, although RR was increased. Toxicity was higher with the combination, including increased diarrhea and liver enzyme elevations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10549-012-2399-4 | DOI Listing |
Pharmaceuticals (Basel)
January 2025
Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGH), Riyadh 11481, Saudi Arabia.
Breast cancer remains a significant global health concern, with approximately 2.3 million diagnosed cases and 670,000 deaths annually. Current targeted therapies face challenges such as resistance and adverse side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Cancer Biotherapeutics Research Group, Life Sciences Institute, School of Biotechnology, Dublin City University, Dublin 9, D09 NR58 Dublin, Ireland.
HER2-positive/oestrogen receptor-positive (HER2+/ER+) represents a unique breast cancer subtype. The use of individual HER2- or ER-targeting agents can lead to the acquisition of therapeutic resistance due to compensatory receptor crosstalk. New drug combinations targeting HER2 and ER could improve outcomes for patients with HER2+/ER+ breast cancer.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFMol Divers
January 2025
Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Microenvironment and Biomarkers of Solid Tumors Unit, Department of Experimental Oncology, Amadeolab Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy.
Background: Growing evidence shows that the reprogramming of fatty acid (FA) metabolism plays a key role in HER2-positive (HER2 +) breast cancer (BC) aggressiveness, therapy resistance and cancer stemness. In particular, HER2 + BC has been defined as a "lipogenic disease" due to the functional and bi-directional crosstalk occurring between HER2-mediated oncogenic signaling and FA biosynthesis via FA synthase activity. In this context, the functional role exerted by the reprogramming of CD36-mediated FA uptake in HER2 + BC poor prognosis and therapy resistance remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!