Delayed-type heparin allergy: diagnostic procedures and treatment alternatives-a case series including 15 patients.

World Allergy Organ J

From the Saarland University Hospital, *Department of Dermatology, **Institute of Clinical Hemostaseology and Transfusion Medicine, ‡Department of Thoracic and Cardiovascular Surgery, and §Department of Anaesthesiology and Intensive Care, Homburg/Saar, Germany.

Published: December 2008

Delayed-type hypersensitivity reactions (DTHRs) after subcutaneous application of unfractionated heparins or low-molecular-weight heparins are not uncommon. Standard allergological testing usually includes intracutaneous skin tests and patch testing of different heparins, heparinoids, and thrombin inhibitors followed by subcutaneous and/or intravenous challenge with skin test-negative drugs. We present data from a single-center case series of 15 patients with DTHR after low-molecular-weight heparin administration. Intracutaneous testing that can be considered as gold standard identified the suspicious elicitor in 11 (73.4%) of 15 of the patients. Patch testing was positive in 5 (33.4%) of 15 of the patients and was only positive in patients who were also reacting in the intradermal testing. Intravenous challenge with heparin sodium was performed in 10 of 15 patients and was well tolerated in all cases, despite prior positive intracutaneous tests with the same substance. Intracutaneous documentation of DTHR was not an adequate predictor of intravenous challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650972PMC
http://dx.doi.org/10.1097/WOX.0b013e31818def58DOI Listing

Publication Analysis

Top Keywords

intravenous challenge
12
case series
8
patch testing
8
patients
6
testing
5
delayed-type heparin
4
heparin allergy
4
allergy diagnostic
4
diagnostic procedures
4
procedures treatment
4

Similar Publications

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.

View Article and Find Full Text PDF

Despite significant global reductions in cases of pneumonia during the last 3 decades, pneumonia remains the leading cause of post-neonatal mortality in children aged <5 years. Beyond the immediate disease burden it imposes, pneumonia contributes to long-term morbidity, including lung function deficits and bronchiectasis. Viruses are the most common cause of childhood pneumonia, but bacteria also play a crucial role.

View Article and Find Full Text PDF

Background: The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated.

View Article and Find Full Text PDF

Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.

Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.

Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!