Background: Mitochondrial dysfunction is associated with various aging diseases. The copy number of mtDNA in human cells may therefore be a potential biomarker for diagnostics of aging. Here we propose a new computational method for the accurate assessment of mtDNA copies from whole genome sequencing data.

Results: Two families of the human whole genome sequencing datasets from the HapMap and the 1000 Genomes projects were used for the accurate counting of mitochondrial DNA copy numbers. The results revealed the parental mitochondrial DNA copy numbers are significantly lower than that of their children in these samples. There are 8%~21% more copies of mtDNA in samples from the children than from their parents. The experiment demonstrated the possible correlations between the quantity of mitochondrial DNA and aging-related diseases.

Conclusions: Since the next-generation sequencing technology strives to deliver affordable and non-biased sequencing results, accurate assessment of mtDNA copy numbers can be achieved effectively from the output of whole genome sequencing. We implemented the method as a software package MitoCounter with the source code and user's guide available to the public at http://sourceforge.net/projects/mitocounter/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521385PMC
http://dx.doi.org/10.1186/1471-2164-13-S7-S5DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
16
genome sequencing
16
copy numbers
12
copies genome
8
accurate assessment
8
assessment mtdna
8
dna copy
8
sequencing
6
mitochondrial
5
quantitative assessment
4

Similar Publications

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

Objective: In this study, we examined the genetic, medical, and molecular traits of two Han Chinese families with the tRNA G5783A mutation to investigate the relationship between mitochondrial DNA (mtDNA) mutations and major depressive disorder (MDD).

Methods: Clinical data and comprehensive mitochondrial genomes were collected from the two families. Variants were assessed for evolutionary conservation, allelic frequencies, and their structural and functional impacts.

View Article and Find Full Text PDF

Introduction: This article presents the fourth detection of macroscopic cystic lesions due to sarcocystosis in domestic pigs during routine meat inspection worldwide, and the first molecular detection of in a domestic pig in Poland. Pigs can become intermediate hosts for by accidental ingestion of oocysts or sporocysts present in food or water contaminated by the faeces of canids (definitive hosts).

Material And Methods: The affected swine showed no clinical symptoms such as weight loss, dermatitis or dyspnoea suggesting sarcocystosis.

View Article and Find Full Text PDF

Thunb. (1784) is primarily distributed in eastern Asia,  has a total length of 152,778 bp and consists of a large single copy (LSC) region of 84,517 bp, a small single copy (SSC) region of 18,277 bp, and two inverted repeat (IRs) regions of 24,992 bp . The GC content is 37.

View Article and Find Full Text PDF

The complete mitochondrial genome of the was sequenced by Sanger platform. The circular mitogenome of (16,512 bp) encoded the typical 37 genes, and one non-coding regions. All of the protein-encoding genes were located on the H chain except ND6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!