Water-soluble amphiphilic chitosan nanocarriers tethered with the photosensitizer meso-tetraphenylporphyrin were synthesized in a seven-step procedure, starting from 3,6-di-O-tert-butyldimethylsilyl-chitosan and 5-(p-aminophenyl)-10,15,20-triphenylporphyrin. The lipophilic photosensitizer could be introduced in a quantitative and reproducible reaction to give either 0.1 or 0.25 degrees of substitution per glucosamine monomer. Fluorescence and NMR investigations revealed the dynamic structures of the carriers, which formed nanoparticles in aqueous solution with a core of π-stacked photosensitizers. These carriers can then unfold in the lipophilic environment, and the photosensitizer moiety can thus be inserted into the cell membrane. The efficacy of the carriers for photochemical internalization (PCI) mediated gene delivery was evaluated in vitro using the HCT116/LUC human colon carcinoma cell line. The efficacy of transfection was comparable to what could be achieved by the reference compound and current clinical candidate TPCS(2a).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm301270rDOI Listing

Publication Analysis

Top Keywords

carriers photochemical
8
tetraphenylporphyrin tethered
4
tethered chitosan
4
chitosan based
4
carriers
4
based carriers
4
photochemical transfection
4
transfection water-soluble
4
water-soluble amphiphilic
4
amphiphilic chitosan
4

Similar Publications

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

The aim of this work was to check the effects of five Bradyrhizobium japonicum inoculants from different producers on growth, photochemical efficiency, nitrate reductase activity, amount of hydrogen peroxide, activity of catalase, non-specific peroxidase, and superoxide dismutase, seed yield, and nodulation of soybean cv. 'Malaga'. We also evaluated expression of such nodulation genes as NIC1, NOD21, and NORKb.

View Article and Find Full Text PDF

Metallic heterostructural nanocrystals (HNCs) hold immense potential in electrocatalytic carbon dioxide reduction reaction (CORR) owing to their abundant active sites and high intrinsic activity. However, a significant challenge still remains in achieving controlled nucleation and growth sites for HNCs on supports and comprehending the influence of the structure-activity relationship on electrocatalytic CORR performance. This work presents a photochemical self-assembly technique without the necessity for reducing agents or facet-specific capping agents.

View Article and Find Full Text PDF

Robust nCuO modulated by defect engineering enhanced photoelectrochemical biosensor for the detection of miRNA-21.

Biosens Bioelectron

March 2025

National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, People's Republic of China. Electronic address:

Traditional p-type CuO (pCuO), valued for its tunable band gap and p-type conductivity, has been widely used in photoelectrochemical biosensors. However, its weak conductivity leads to unsatisfied photoelectrochemical signals and limits its use in in situ vulcanization reactions. We synthesized n-type CuO (nCuO) with abundant oxygen vacancies through a simple chemical reduction for the first time, which was applied as efficient photoactive material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!