Bone is a nanocomposite composed of organic (mainly collagen) and inorganic (nanocrystalline hydroxyapatite) components, with a hierarchical structure ranging from nano- to macroscale. Its functions include providing mechanical support and transmitting physio-chemical and mechano-chemical cues. Clinical repair and reconstruction of bone defects has been conducted using autologous and allogeneic tissues and alloplastic materials, with functional limitations. The design and development of biomaterial scaffolds that will replace the form and function of native tissue while promoting regeneration without necrosis or scar formation is a challenging area of research. Nanomaterials and nanocomposites are promising platforms to recapitulate the organization of natural extracellular matrix for the fabrication of functional bone tissues because nanostructure provides a closer approximation to native bone architecture. Nanostructured scaffolds provide structural support for the cells and regulate cell proliferation, differentiation, and migration, which results in the formation of functional tissues. Unique properties of nanomaterials, such as increased wettability and surface area, lead to increased protein adsorption when compared with conventional biomaterials. Cell-scaffold interactions at the cell-material nanointerface may be mediated by integrin-triggered signaling pathways that affect cell behavior. The materials selection and processing techniques can affect the chemical, physical, mechanical, and cellular recognition properties of biomaterials. In this article, we focused on reviewing current fabrication techniques for nanomaterials and nanocomposites, their cell interaction properties and their application in bone tissue engineering and regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.32823 | DOI Listing |
Adv Sci (Weinh)
January 2025
Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Bioceramics Group, Research Center for Macromoleclules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan. Electronic address:
Objectives: Hydroxyapatite (HAp)/collagen (Col) cylinders with laminated collagen layers were implanted into the tibial diaphysis of rats and examined histochemically to clarify how the orientation of HAp and Col bone-like nanocomposite fibers in HAp/Col blocks affects bone resorption and formation.
Methods: HAp/Col fibers were synthesized and compressed into cylindrical blocks to mimic bone nanostructures. These were implanted into the cortical bone cavities of 10-week-old male Wistar rats with fiber bundles parallel to the tibial surface.
PLoS One
January 2025
Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Department of Clinical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
The structural alterations in the constituent materials of nanocomposites such as graphene nanocomposites typically induce changes in their properties including mechanical, electrical, and optical properties. Therefore, by altering the preparation conditions of nanocomposites and investigating their responsiveness to basic biomolecules (such as proteins), it is possible to explore the application potentials of the composites and guide development of new nanocomposite preparation. In this study, different composites of graphene oxide and gold nanoparticles (AuNPs/GO) were obtained by varying the volumes of reducing agents used in the one-pot hydrothermal method.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:
Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Department of Chemistry, Govt. College Women University, Arfa Kareem Road, Faisalabad 38000 Pakistan. Electronic address:
The importance of developing multifunctional nanomaterials for sensing technologies is increasing with the arrival of nanotechnology. In this study, we describe the introduction of novel nanoprobe electro-active material into the architecture of an electrochemical immuno-sensor. Based on the electrochemical immuno-sensor, functionalized tin oxide/graphitic carbon nitride nanocomposite (fSnO/g-CN) was synthesized and then analyte specific anti-aflatoxin M monoclonal antibody (AFM-ab) combined to form an electro-active nanoprobe (fSnO/g-CN/AFM-ab).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!