Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To promote the application of methoxy poly(ethylene glycol)-cholesterol (mPEG-Chol), mPEG-Chol was used to prepare core-shell micelles encapsulating poorly water-soluble docetaxel (DTX-PM) by modified cosolvent evaporation method. Approaches to enhance DTX entrapment efficiency (EE) and minimize particle size were investigated in detail, including organic and aqueous phase composition, organic/aqueous phase ratio, and polymer concentration. In optimal formulation, micelles had higher EE (97.6%) and drug loading (4.76%) with the diameter of 13.76 ± 0.68 nm and polydispersity index of 0.213 ± 0.006. Transmission electron microscopy (TEM) showed that the micelles were spherical, and differential scanning calorimetry (DSC) analysis proved that DTX was successfully entrapped into mPEG-Chol micelles. The in vitro cytotoxicity experiments displayed that blank micelles had no effect on the growth of SKOV-3, BXPC-3, A549, and HepG-2 cells, demonstrating that mPEG-Chol was one of the biocompatible biomaterials. The half inhibition concentration of DTX-PM on SKOV-3, BXPC-3, A549, and HepG-2 cells were 10.08, 7.6, 28.37, and 125.75 ng/mL, respectively. DTX-PM had the similar antitumor activity to free DTX, indicating that mPEG-Chol was a promising micellar vector for hydrophobic drug delivery. In addition, this work provided a new and facile approach to prepare drug-loaded micelles with controllable performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23418 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!