A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability. | LitMetric

Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.

J Hazard Mater

RWTH Aachen University, Institute of Hydrogeology, Lochnerstraße 4-20, 52064 Aachen, Germany. Electronic address:

Published: November 2013

Cretaceous shallow marine sediments from northwestern Germany exhibit a distinct colour and geochemical boundary in a depth of several decametres, witnessing a terrestrial oxidative paleo redox process which resulted in cement loss and oxidation of Fe(II) phases. Sediment samples were obtained from boreholes drilled in near-coastal and further basinward paleo environments, including both reduced and oxidized redox facies, to characterize As and Fe occurrence in unaltered layers and redistributional consequences of the redox event. Geochemical and mineralogical composition and As fractionation were assessed. Arsenic resides in pyrite in the reduced section with a bulk rock maximum concentration of 39 μg g(-1), calculated Aspyrite is ~0.2 wt.%. Siderite concretions in the fine sands do not function as As sinks, neither does glauconite whose general As/Fe leaching behaviour was characterized. In the zone of redox transition, reduced and oxidized phases coexist and elevated As concentrations (up to 73 μg g(-1)) with high proportions of reactive As were detected. Arsenic behaviour changes from relatively homogeneous Fe sulphide-control in the unaltered sediments to very heterogeneous Fe hydroxide-control above the paleo redox boundary. The studied characteristics determine recent As availability in the subsurface and must be considered during groundwater extraction from this highly important aquifer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.12.015DOI Listing

Publication Analysis

Top Keywords

paleo redox
8
reduced oxidized
8
μg g-1
8
redox
6
crossing redox
4
redox boundaries--aquifer
4
boundaries--aquifer redox
4
redox history
4
history effects
4
effects iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!