A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new approach to the synthesis of heteronuclear propeller-like single molecule magnets. | LitMetric

Propeller-like [Fe(4)(L)(2)(dk)(6)] complexes, in which Hdk is a β-diketone and H(3)L is a tripodal alcohol, R-C(CH(2)OH)(3), exhibit tunable magnetic anisotropy barriers and retain their magnetic memory effect when chemically anchored on metal surfaces. Heteronuclear analogues of these M(4) complexes have been sought to afford a library of compounds with different total spin (S) values, but synthetic efforts described so far gave solid solutions containing M(4) in addition to the desired M(3)M' species. We now present a novel synthetic route to M(3)M' complexes featuring a central chromium(III) ion. The three-step preparation goes through coordination of Cr(III) by two equivalents of tripodal alkoxide (R = Et and Ph), followed by reaction of this complex "core" with the peripheral +III metal ions. Products have been characterised by chemical analyses together with (1)H-NMR, FTIR, W-band EPR, DC/AC magnetic susceptibility measurements and single crystal X-ray diffractometry. Due to the chemical inertness of Cr(III), this route yields 100% pure Fe(3)Cr complexes without metal scrambling; what is more, it is suitable for designing novel heteronuclear single molecule magnets (SMMs) with a variety of d- and f-metals and R groups.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt32618cDOI Listing

Publication Analysis

Top Keywords

single molecule
8
molecule magnets
8
approach synthesis
4
synthesis heteronuclear
4
heteronuclear propeller-like
4
propeller-like single
4
magnets propeller-like
4
propeller-like [fe4l2dk6]
4
complexes
4
[fe4l2dk6] complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!