Sclerotinia sclerotiorum (Lib.) de Bary, S. minor Jagger, S. trifoliorum Eriks, and S. homoeocarpa F.T. Benn are the most relevant plant pathogenic species within the genus Sclerotinia because of their large range of economically important hosts, including tomato, peanut, alfalfa, and turfgrass, among others. Species identification based on morphological characteristics is challenging and time demanding, especially when one crop hosts multiple species. The objective of this study was to design specific primers compatible with multiplexing, for rapid, sensitive and accurate detection and discrimination among four Sclerotinia species. Specific primers were designed for the aspartyl protease gene of S. sclerotiorum, the calmodulin gene of S. trifoliorum, the elongation factor-1 alpha gene of S. homoeocarpa, and the laccase 2 gene of S. minor. The specificity and sensitivity of each primer set was tested individually and in multiplex against isolates of each species and validated using genomic DNA from infected plants. Each primer set consistently amplified DNA of its target gene only. DNA fragments of different sizes were amplified: a 264 bp PCR product for S. minor, a 218 bp product for S. homoeocarpa, a 171 bp product for S. sclerotiorum, and a 97 bp product for S. trifoliorum. These primer sets can be used individually or in multiplex for identification of Sclerotinia spp. in pure culture or from infected plants. The multiplex assay had a lower sensitivity limit than the simplex assays (0.0001 pg/μL DNA of each species). The multiplex assay developed is an accurate and rapid tool to differentiate between the most relevant plant pathogenic Sclerotinia species in a single PCR reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2012.12.020DOI Listing

Publication Analysis

Top Keywords

species
8
species genus
8
genus sclerotinia
8
relevant plant
8
plant pathogenic
8
specific primers
8
sclerotinia species
8
primer set
8
individually multiplex
8
infected plants
8

Similar Publications

Point-of-care ultrasound in the diagnosis of hepatic gas gangrene.

J Ultrasound

January 2025

Argentinian Critical Care Ultrasonography Association (ASARUC), Buenos Aires, Argentina.

Hepatic gas gangrene (HGG) is a rare but life-threatening condition typically caused by anaerobic bacteria such as Clostridium perfringens, though Gram-negative bacteria like Escherichia coli and Klebsiella species have also been implicated. Traditionally diagnosed via computed tomography (CT), point-of-care ultrasound (POCUS) has emerged as a valuable tool in critical care settings for its non-invasive, bedside utility. We report the case of a 51-year-old female with choledochal syndrome secondary to cholangiocarcinoma who developed HGG following left extended hepatectomy and biliary reconstruction.

View Article and Find Full Text PDF

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!