Fungal degradation of wood is mainly restricted to basidiomycetes, these organisms having developed complex oxidative and hydrolytic enzymatic systems. Besides these systems, wood-decaying fungi possess intracellular networks allowing them to deal with the myriad of potential toxic compounds resulting at least in part from wood degradation but also more generally from recalcitrant organic matter degradation. The members of the detoxification pathways constitute the xenome. Generally, they belong to multigenic families such as the cytochrome P450 monooxygenases and the glutathione transferases. Taking advantage of the recent release of numerous genomes of basidiomycetes, we show here that these multigenic families are extended and functionally related in wood-decaying fungi. Furthermore, we postulate that these rapidly evolving multigenic families could reflect the adaptation of these fungi to the diversity of their substrate and provide keys to understand their ecology. This is of particular importance for white biotechnology, this xenome being a putative target for improving degradation properties of these fungi in biomass valorization purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815920PMC
http://dx.doi.org/10.1111/1751-7915.12015DOI Listing

Publication Analysis

Top Keywords

multigenic families
12
wood-decaying fungi
8
fungi
5
xenomic networks
4
networks variability
4
variability adaptation
4
adaptation traits
4
traits wood
4
wood decaying
4
decaying fungi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!