Black spot disease, Alternaria alternata Japanese pear pathotype, produces the host-specific toxin AK-toxin, an important pathogenicity factor. Previously, we have found that hydrogen peroxide is produced in the hyphal cell wall at the plant-pathogen interaction site, suggesting that the fungal reactive oxygen species (ROS) generation machinery is important for pathogenicity. In this study, we identified two NADPH oxidase (NoxA and NoxB) genes and produced nox disruption mutants. ΔnoxA and ΔnoxB disruption mutants showed increased hyphal branching and spore production per unit area. Surprisingly, only the ΔnoxB disruption mutant compromised disease symptoms. A fluorescent protein reporter assay revealed that only NoxB localized at the appressoria during pear leaf infection. In contrast, both NoxA and NoxB were highly expressed on the cellulose membrane, and these Nox proteins were also localized at the appressoria. In the ΔnoxB disruption mutant, we could not detect any necrotic lesions caused by AK-toxin. Moreover, the ΔnoxB disruption mutant did not induce papilla formation on pear leaves. Ultrastructural analysis revealed that the ΔnoxB disruption mutant also did not penetrate the cuticle layer. Moreover, ROS generation was not essential for penetration, suggesting that NoxB may have an unknown function in penetration. Taken together, our results suggest that NoxB is essential for aggressiveness and basal pathogenicity in A. alternata.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6638787 | PMC |
http://dx.doi.org/10.1111/mpp.12013 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Ultrasonography, Fuwai Yunnan Hospital, Chinese Academy of Medical, Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China. Electronic address:
Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Urology, Peking University First Hospital, Beijing 100034, China.
Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.
View Article and Find Full Text PDFBehav Pharmacol
January 2025
Department of Psychology, Massachusetts College of Liberal Arts, Massachusetts, USA.
In recent years, the recreational use of xylazine has increased dramatically in the USA. Although xylazine has been used as an anesthetic in veterinary medicine for decades, little is known about its behavioral effects. We took advantage of the planarian's innate negative phototaxis, the reliable movement from the light side to the dark side of a Petri dish, to explore the organism's suitability as an animal model for investigating the preclinical pharmacology of xylazine.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, University of Padova, Padova, Italy.
The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India.
This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!